Novel dual vector quaternions based adaptive extended two-step filter for pose and inertial parameters estimation of a free-floating tumbling space target

Author(s):  
Xianghao Hou ◽  
Jianping Yuan

Estimating the parameters of an uncooperative space target is essential to the on-orbit service missions. A good parameter estimation can provide sufficient prior knowledge for the further operations. This paper proposes a novel dual vector quaternions based adaptive extended two-step filter (DVQ-AETSF) to estimate the pose and inertial parameters of a free-floating tumbling space target. Firstly, both of the rotational and translational motions are modeled by the dual vector quaternions (DVQ). Then, by using the DVQ-based system model, the DVQ-AETSF is designed. The proposed DVQ-AETSF mainly consists of a traditional Kalman filter prediction procedure in the first step and an adaptive regularized Newton iteration technique in the second step. The new proposed two-step filter aims to deal with the high nonlinearities in the measurements equations. By using the proposed DVQ-AETSF, both of the pose and initial parameters of a free floating tumbling space target under large errors of initial guesses and high measurement noise can be well estimated. Finally, the proposed DVQ-AETSF is validated by mathematical simulations to show its performance.

Author(s):  
Jianping Yuan ◽  
Xianghao Hou ◽  
Chong Sun ◽  
Yu Cheng

Estimating the parameters of an unknown free-floating tumbling spacecraft is an essential task for the on-orbit servicing missions. This paper proposes a dual vector quaternion based fault-tolerant pose and inertial parameters estimation algorithm of an uncooperative space target using two formation flying small satellites. Firstly, by utilizing the dual vector quaternions to model the kinematics and dynamics of the system, not only the representation of the model is concise and compacted, but also the translational and rotational coupled effects are considered. By using this modeling technique along with the measurements from the on-board vision-based sensors, a dual vector quaternion based extended Kalman filter for each of the two small satellites is designed. Secondly, both of the estimations from each small satellite will be used as inputs of the fault-tolerant algorithm. This algorithm is based on the fault-tolerant federal extended Kalman filter strategy to overcome the estimation errors caused by the faulty measurements, the unknown space environment and the computing errors by setting the appropriate ratios of the two estimations from the first step dual vector quaternions extended Kalman filter. Together with the first and second steps, a novel fault-tolerant dual vector quaternions federal extended Kalman filter using two formation flying small satellites is proposed by this paper to estimate the pose and inertial parameters of a free-floating tumbling space target. By utilizing the estimation algorithm, a good prior knowledge of the unknown space target can be achieved. Finally, the proposed dual vector quaternion federal extended Kalman filter is validated by mathematical simulations to show its robust performances.


Author(s):  
Xianghao Hou ◽  
Jianping Yuan

Based on the dual vector quaternions, this paper modeled both the kinematics and dynamics of the disabled satellites. In addition, considering the complex space environment may lead to the measurements failure of the target, a novel robust federal Kalman filter based algorithm (DVQ-REKF) is proposed by this paper. By utilizing the designed algorithm, both the pose and inertial parameters can be estimated in the same time when the measurements by each of the monocular camera on the service satellite failed for a certain period of time. Finally, the simulation shows the validity of the designed DVQ-REKF.


2021 ◽  
Author(s):  
Rabindra A. Gangapersaud

This study addresses the problem of detumbling a non-cooperative space target, such as a malfunctioning satellite, using a space robot for the purpose of performing on-orbit servicing. The space robot is denoted as the servicer and consists of a satellite base equipped with a robotic manipulator. The formulation of a detumbling control strategy must respect limits on the grasping force and torque at the servicer’s end-effector without knowledge of the target’s inertial parameters (mass, inertia tensor, location of center of mass). In the literature, prior studies have formulated detumbling strategies under the assumption of accurate knowledge of the target’s inertial parameters. However, obtaining accurate estimates of the target’s inertial parameters is difficult, and parameter uncertainty may lead to instability and violation of the end-effector force/torque limits. This study will address the problem of detumbling a noncooperative target with unknown but bounded inertial parameters subjected to force/torque limits at the servicer’s end-effector. In this study, two detumbling control strategies are presented. The first detumbling strategy is presented under the assumption that force/torque measurements at the end-effector are available. Detumbling of the target is achieved by applying a reference force/torque to the target that is designed to bring the target’s tumbling motion to rest subjected to force/torque limits. To ensure stable detumbling of the target, a robust compensator is designed based on bounds of the target’s unknown inertial parameters. Furthermore, once the detumbling process starts, in order to reduce the robust control gains, bounds on the target’s unknown inertial parameters are estimated in real-time. The resultant detumbling controller enables the servicer to detumble the target while complying with the target’s unknown residual tumbling motion. The second detumbling control strategy is developed without the need of end-effector’s force/torque measurements and takes into account magnitude constraints on servicer’s control inputs in the detumbling controller’s design. Detumbling is achieved by tracking a desired detumbling trajectory that is delineated subjected to end-effector force/torque limits and requires bounds on the target’s inertial parameters. The hyperbolic tangent function is utilized to model the magnitude constraints on the servicer’s control inputs, resulting in a system that is non-affine in its control inputs. As a result, an augmented model of the servicer is presented to allow the formulation of the detumbling controller. Using bounds on the target’s inertial parameters, robust adaptive control approach is utilized to design the detumbling controller with the backstepping technique in order to track the desired detumbling trajectory and to reject the gained target’s momentum. Numerical simulation studies were conducted for both detumbling control strategies utilizing a servicer equipped with a 7-degree-of-freedom (DOF) manipulator. The results demonstrate that both control strategies are capable of detumbling a non-cooperative target with unknown inertial parameters subjected to force/torque limits. Experiments conducted with a 3-DOF manipulator demonstrate that the design procedure utilized to delineate the desired detumbling trajectory in the second detumbling strategy respects force/torque limits at the end effector. The study is concluded with a discussion comparing the two proposed detumbling strategies by highlighting their advantages and disadvantages.


1999 ◽  
Author(s):  
Zhijiang Zhang ◽  
Yingjie Yu ◽  
Rensheng Che

Abstract The study describes a new vision coordinate measuring system-probe imaging vision coordinate measuring system using a single camera. In this system, a hand-held probe is used to contact the measured surface, some of which may be hidden from the view of camera. By analyzing the changes in the images of some known characteristic points on the hand-held probe 3-D coordinate measurement is realized. This paper proposes a measurement system model and an iteration technique to find its solution. Furthermore, the validity of the proposed measuring system is confirmed by experiments.


2013 ◽  
Vol 709 ◽  
pp. 571-574 ◽  
Author(s):  
Miao Chao Chen ◽  
Yu Zhao

In this paper, we investigate the parameters estimation in nonlinear regression models. Firstly, a Gauss-Newton iteration method is given to estimate the parameters in the nonlinear regression models. Moreover, a numerical simulation study and real data analysis are given to illustrate the validity of proposed diagnostic measures.


2021 ◽  
Author(s):  
Rabindra A. Gangapersaud

This study addresses the problem of detumbling a non-cooperative space target, such as a malfunctioning satellite, using a space robot for the purpose of performing on-orbit servicing. The space robot is denoted as the servicer and consists of a satellite base equipped with a robotic manipulator. The formulation of a detumbling control strategy must respect limits on the grasping force and torque at the servicer’s end-effector without knowledge of the target’s inertial parameters (mass, inertia tensor, location of center of mass). In the literature, prior studies have formulated detumbling strategies under the assumption of accurate knowledge of the target’s inertial parameters. However, obtaining accurate estimates of the target’s inertial parameters is difficult, and parameter uncertainty may lead to instability and violation of the end-effector force/torque limits. This study will address the problem of detumbling a noncooperative target with unknown but bounded inertial parameters subjected to force/torque limits at the servicer’s end-effector. In this study, two detumbling control strategies are presented. The first detumbling strategy is presented under the assumption that force/torque measurements at the end-effector are available. Detumbling of the target is achieved by applying a reference force/torque to the target that is designed to bring the target’s tumbling motion to rest subjected to force/torque limits. To ensure stable detumbling of the target, a robust compensator is designed based on bounds of the target’s unknown inertial parameters. Furthermore, once the detumbling process starts, in order to reduce the robust control gains, bounds on the target’s unknown inertial parameters are estimated in real-time. The resultant detumbling controller enables the servicer to detumble the target while complying with the target’s unknown residual tumbling motion. The second detumbling control strategy is developed without the need of end-effector’s force/torque measurements and takes into account magnitude constraints on servicer’s control inputs in the detumbling controller’s design. Detumbling is achieved by tracking a desired detumbling trajectory that is delineated subjected to end-effector force/torque limits and requires bounds on the target’s inertial parameters. The hyperbolic tangent function is utilized to model the magnitude constraints on the servicer’s control inputs, resulting in a system that is non-affine in its control inputs. As a result, an augmented model of the servicer is presented to allow the formulation of the detumbling controller. Using bounds on the target’s inertial parameters, robust adaptive control approach is utilized to design the detumbling controller with the backstepping technique in order to track the desired detumbling trajectory and to reject the gained target’s momentum. Numerical simulation studies were conducted for both detumbling control strategies utilizing a servicer equipped with a 7-degree-of-freedom (DOF) manipulator. The results demonstrate that both control strategies are capable of detumbling a non-cooperative target with unknown inertial parameters subjected to force/torque limits. Experiments conducted with a 3-DOF manipulator demonstrate that the design procedure utilized to delineate the desired detumbling trajectory in the second detumbling strategy respects force/torque limits at the end effector. The study is concluded with a discussion comparing the two proposed detumbling strategies by highlighting their advantages and disadvantages.


Sign in / Sign up

Export Citation Format

Share Document