Novel and simplified optimisation pathway using response surface and design of experiments methodologies for dental implants based on the stress of the cortical bone

Author(s):  
João PO Freitas ◽  
Bruno Agostinho Hernandez ◽  
Paulo J Paupitz Gonçalves ◽  
Edmea C Baptista ◽  
Edson A Capello Sousa

Dental implants are widely used as a long-term treatment solution for missing teeth. A titanium implant is inserted into the jawbone, acting as a replacement for the lost tooth root and can then support a denture, crown or bridge. This allows discreet and high-quality aesthetic and functional improvement, boosting patient confidence. The use of implants also restores normal functions such as speech and mastication. Once an implant is placed, the surrounding bone will fuse to the titanium in a process known as osseointegration. The success of osseointegration is dependent on stress distribution within the surrounding bone and thus implant geometry plays an important role in it. Optimisation analyses are used to identify the geometry which results in the most favourable stress distribution, but the traditional methodology is inefficient, requiring analysis of numerous models and parameter combinations to identify the optimal solution. A proposed improvement to the traditional methodology includes the use of Design of Experiments (DOE) together with Response Surface Methodology (RSM). This would allow for a well-reasoned combination of parameters to be proposed. This study aims to use DOE, RSM and finite element models to develop a simplified optimisation analysis method for dental implant design. Drawing on data and results from previous studies, two-dimensional finite element models of a single Branemark implant, a multi-unit abutment, two prosthetic screws, a prosthetic crown and a region of mandibular bone were built. A small number of combinations of implant diameter and length were set based on the DOE method to analyse the influence of geometry on stress distribution at the bone-implant interface. The results agreed with previous studies and indicated that implant length is the critical parameter in reducing stress on cortical bone. The proposed method represents a more efficient analysis of multiple geometrical combinations with reduced time and computational cost, using fewer than a third of the models required by the traditional methods. Further work should include the application of this methodology to optimisation analyses using three-dimensional finite element models.

Author(s):  
Suneetha Rao ◽  
Honey Arora ◽  
Shahul Hameed

ABSTRACT Purpose In spite of many advances in the field of prosthetic dentistry, the choice of whether to treat and retain a grossly compromised tooth or to extract and replace with an implant is debatable. Alveolar bone preservation is one of the main criteria to select the treatment option. This is directly affected by the stress generated in the cortical bone under variable loads and is therefore, relevant. Materials and methods Two three-dimensional finite element models were generated in relation to maxillary second premolar using ANSYS software. Model-I was parallel-tapered titanium implant with screw-retained titanium abutment and porcelain fused to metal (PFM) crown. Model-P was fiber post and com- posite resin core with PFM crown. Luting cement was resin cement. Both the models were surrounded by homogeneous and isotropic cortical and cancellous bone, and were subjected to variable loads of 300, 400, and 500 N in axial (0°) and nonaxial (15°, 45°) directions. Results Stress in the cortical bone in megapascal (MPa) in Model-I/Model-P when subjected to variable loads in newtons(N) in axial direction was 300 N - 37.6 MPa/47.3 MPa; 400 N - 50.2 MPa/63.0 MPa; 500 N - 62.7 MPa/63.0 MPa. 15°- 300 N - 68.5 MPa/65.9 MPa; 400 N - 91.3 MPa/87.9 MPa; 500 N - 114.2 MPa/87.9 MPa. 45° - 300 N - 136.3 MPa/88.9 MPa; 400 N - 181.8 MPa/118.5 MPa; 500 N - 227.2 MPa/118.5 MPa. Conclusion Within the limitation of this study, it was concluded that on axial loading, both the treatment modalities showed no significant difference, but on nonaxial loading, the cortical bone in the implant model showed to have considerably higher stress than post core-treated tooth model. Hence, given a choice, this study favors retaining and restoring a compromised tooth with post core and crown rather than extracting and replacing with an implant. How to cite this article Rao S, Arora H, Hameed S. A Three- dimensional Finite Element Analysis of Stress Distribution in the Cortical Bone in Single Tooth Implant and Post Core-treated Tooth subjected to variable Loads. Int J Prosthodont Restor Dent 2017;7(1):8-16.


2021 ◽  
Vol 11 (Suppl. 1) ◽  
pp. 194-200
Author(s):  
Yakup Kantaci ◽  
Sabiha Zelal Ülkü

Aim: To evaluate the stress distribution in the cortical bone under parafunctional forces with different occlusal thicknesses, monolithic zirconia with different implant diameters, and number variations in implant-supported fixed prosthetic restorations applied in patients with bruxism. Methodology: The tomographic sections of the previously registered mandible were used in order to model the mandible. Modeled bone height is 30 mm, cortical bone thickness is 1.5 mm, and trabecular bone thickness is modeled as 13 mm. By placing two implants in the created bone model, a three-member main model (Group 1), the number of implants was increased, three implants supported the Group 2 models, the diameter of the implants was increased, and the Group 3 models were created. The created Group 1, 2, 3 models, the occlusal thickness was divided into subgroups with 1.0, 1.5, and 2.0 mm, respectively (Groups A, B, and C). The groups were applied in two directions: vertical and 30o oblique. Stress values under forces were analyzed by finite element stress analysis. Results: Under vertical loading, the maximum principal stress value in the cortical bone was found to be lowest in Group 2C, and the highest maximum principal stress value was found in Group 1A. The minimum principal stress value in the cortical bone was found to be the lowest in Group 3C, and the highest minimum principal stress value was found in Group 1A. Under oblique loading, the maximum principal stress value in the cortical bone was found to be the lowest in Group 3C and the highest maximum principal stress value was found in Group 1A. The minimum principal stress value in the cortical bone was found to be lowest in Group 3C, and the highest minimum principal stress value was found in Group1A. Conclusion: Stresses caused by oblique forces are more than vertical forces. Increasing the occlusal thickness of the implant fixed prosthesis material, implant diameter, and number reduce the minimum and maximum principal stress values in the cortical   How to cite this article: Kantaci Y, Ülkü SZ. Evaluation of the stress distribution in the cortical bone caused by variations in implant applications in patients with bruxism: A three-dimensional finite element analysis. Int Dent Res 2021;11(Suppl.1):194-200. https://doi.org/10.5577/intdentres.2021.vol11.suppl1.27   Linguistic Revision: The English in this manuscript has been checked by at least two professional editors, both native speakers of English.


2011 ◽  
Vol 82 (1) ◽  
pp. 137-144 ◽  
Author(s):  
Hyoung-Jun Jang ◽  
Soon-Yong Kwon ◽  
Seong-Hun Kim ◽  
Young-Guk Park ◽  
Su-Jung Kim

Abstract Objective: To investigate the biomechanical effects of ‘washer’ designed for improving mini-implant stability. Materials and Methods: Four three-dimensional finite element models of the mini-implant and surrounding bone were constructed with washers in different spike lengths (1.5 mm, 2.0 mm, and 2.5 mm). The force was applied in two directions (45° and 90°). The stress distribution on surrounding bone and the displacement of the mini-implant were analyzed. Plots of tensile stress, compression stress, and displacement were calculated, and maximum values in each category were analyzed. Results: The stress distribution was different between the models with washer and without washer. However, no remarkable differences in stress distribution were observed among the models with washer, regardless of spike length. A significantly greater displacement value was observed in the model without washer compared to the models with washer, but no notable difference in displacement value was found among the models with washer. The plots of the displacement distribution of the models with washer presented notable pattern differences as compared with that of the model without washer. Conclusion: With the use of the washer, a more homogeneous distribution of bone stress and less displacement of the mini-implant can be achieved.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Gong Zhang ◽  
Hai Yuan ◽  
Xianshuai Chen ◽  
Weijun Wang ◽  
Jianyu Chen ◽  
...  

Background/Purpose. This three-dimensional finite element study observed the stress distribution characteristics of 12 types of dental implants and their surrounding bone tissues with various structured abutments, implant threads, and healing methods under different amounts of concentrated loading.Materials and Methods. A three-dimensional geometrical model of a dental implant and its surrounding bone tissue was created; the model simulated a screw applied with a preload of 200 N or a torque of 0.2 N·m and a prosthetic crown applied with a vertical or an inclined force of 100 N. The Von Mises stress was evaluated on the 12 types of dental implants and their surrounding bone tissues.Results. Under the same loading force, the stress influence on the implant threads was not significant; however, the stress influence on the cancellous bone was obvious. The stress applied to the abutment, cortical bone, and cancellous bone by the inclined force applied to the crown was larger than the stress applied by the vertical force to the crown, and the abutment stress of the nonsubmerged healing implant system was higher than that of the submerged healing implant system.Conclusion. A dental implant system characterised by a straight abutment, rectangle tooth, and nonsubmerged healing may provide minimum value for the implant-bone interface.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6974
Author(s):  
Dawit-Bogale Alemayehu ◽  
Yeau-Ren Jeng

Variations in the implant thread shape and occlusal load behavior may result in significant changes in the biological and mechanical properties of dental implants and surrounding bone tissue. Most previous studies consider a single implant thread design, an isotropic bone structure, and a static occlusal load. However, the effects of different thread designs, bone material properties, and loading conditions are important concerns in clinical practice. Accordingly, the present study performs Finite Element Analysis (FEA) simulations to investigate the static, quasi-static and dynamic response of the implant and implanted bone material under various thread designs and occlusal loading directions (buccal-lingual, mesiodistal and apical). The simulations focus specifically on the von Mises stress, displacement, shear stress, compressive stress, and tensile stress within the implant and the surrounding bone. The results show that the thread design and occlusal loading rate have a significant effect on the stress distribution and deformation of the implant and bone structure during clinical applications. Overall, the results provide a useful insight into the design of enhanced dental implants for an improved load transfer efficiency and success rate.


Sign in / Sign up

Export Citation Format

Share Document