Side-Chain Derivatives of Biologically Active Nucleosides. Part 2: Synthesis and anti-HIV Activity of 5′-C-Methyl Derivatives of 3′-Fluoro-3′-Deoxythymidine

1996 ◽  
Vol 7 (3) ◽  
pp. 173-177 ◽  
Author(s):  
J. Hiebl ◽  
E. Zbiral ◽  
M. von Janta-Lipinski ◽  
J. Balzarini ◽  
E. De Clercq

1-(3′-Fluoro-2′,3′,6′-trideoxy-β-D-allofuranosyl)thymine [7] and 1-(3′-fluoro-2′,3′,6′-trideoxy-α-L-talofuranosyl) thymine [8] were synthesized starting from the corresponding 2,3′-anhydro nucleoside derivatives. The fluorine was introduced stereoselectively by opening of the anhydro bridge in the presence of HF/AIF3. The 5′-C-methyl derivatives, [7] and [8], of 3′-fluoro-3′-deoxythymidine (FLT) were evaluated for their inhibitory effect against human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2). The compounds [7] and [8] had antiviral activity which was three orders of magnitude lower than the reference compound 3′-fluoro-3′-deoxythymidine. None of the compounds showed appreciable activity against other RNA or DNA viruses at subtoxic concentrations.

Acta Naturae ◽  
2013 ◽  
Vol 5 (1) ◽  
pp. 63-72 ◽  
Author(s):  
S. P. Korolev ◽  
O. V. Kondrashina ◽  
D. S. Druzhilovsky ◽  
A. M. Starosotnikov ◽  
M. D. Dutov ◽  
...  

Human immunodeficiency virus type 1 integrase is one of the most attractive targets for the development of anti-HIV-1 inhibitors. The capacity of a series of 2,1,3-benzoxadiazoles (benzofurazans) and their N-oxides (benzofuroxans) selected using the PASS software to inhibit the catalytic activity of HIV-1 integrase was studied in the present work. Only the nitro-derivatives of these compounds were found to display inhibitory activity. The study of the mechanism of inhibition by nitro-benzofurazans/benzofuroxans showed that they impede the substrate DNA binding at the integrase active site. These inhibitors were also active against integrase mutants resistant to raltegravir, which is the first HIV-1 integrase inhibitor approved for clinical use. The comparison of computer-aided estimations of the pharmacodynamic and pharmacokinetic properties of the compounds studied and raltegravir led us to conclude that these compounds show promise and need to be further studied as potential HIV-1 integrase inhibitors.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Ramadan A. Mahmoud ◽  
Abdel-Azeem M. El-Mazary ◽  
Ashraf Khodeary

Background. Frequent blood transfusions in thalassemia major children expose them to the risk of transfusion-transmitted infections (TTIs). The aim of this study was to estimate the prevalence of hepatitis C virus (HCV), hepatitis B virus (HBV), human immunodeficiency virus (HIV), and cytomegalovirus (CMV) in thalassemic children attending the Pediatrics Departments of both Sohag and Minia Universities of Upper Egypt, during the period from May 2014 to May 2015.Methods. Serum samples were screened for hepatitis B surface antigen (HBsAg), anti-HCV, anti-CMV, and anti-HIV type 1 and type 2 using the Vitek Immunodiagnostic Assay System.Results. The frequencies of anti-HCV, HBsAg, anti-CMV, and anti-HIV type 1 and type 2 were found to be 37.11%, 4.12%, 4.12%, 0.00%, and 0.00%, respectively. Seropositivity for anti-HCV, HBsAg, and anti-CMV increased with increasing age of the patients, duration of the disease, serum ferritin level (ng/mL), and liver enzymes (U/L), while it was not significantly associated with gender, frequency of blood transfusion, or the status of splenectomy operation (P>0.05).Conclusion. The frequency of TTIs, especially HCV, is considerably high among Egyptian children with thalassemia major. It is therefore important to implement measures to improve blood transfusion screening, such as polymerase chain reaction, in order to reduce TTIs from blood donor units.


2003 ◽  
Vol 77 (10) ◽  
pp. 5589-5597 ◽  
Author(s):  
Diana I. Albu ◽  
Agnes Jones-Trower ◽  
Amy M. Woron ◽  
Kathleen Stellrecht ◽  
Christopher C. Broder ◽  
...  

ABSTRACT We have investigated the induction of protective mucosal immunity to human immunodeficiency virus type 1 (HIV-1) isolate 89.6 by intranasal (i.n.) immunization of mice with gp120 and gp140 together with interleukin-12 (IL-12) and cholera toxin subunit B (CTB) as adjuvants. It was found that both IL-12 and CTB were required to elicit mucosal antibody responses and that i.n. immunization resulted in increased total, immunoglobulin G1 (IgG1), and IgG2a anti-HIV-1 antibody levels in serum; increased total, IgG1, IgG2a, and IgA antibody expression in bronchoalveolar lavage fluids; and increased IgA antibody levels in vaginal washes. Levels of anti-HIV-1 antibodies in both sera and secretions were higher in groups immunized with gp140 than in those immunized with gp120. However, only gp120-specific mucosal antibodies demonstrated neutralizing activity against HIV-1 89.6. Taken together, the results show that IL-12 and CTB act synergistically to enhance both systemic and local mucosal antibody responses to HIV-1 glycoproteins and that even though gp140 induces higher antibody titers than gp120, only gp120-specific mucosal antibodies interfere with virus infectivity.


1999 ◽  
Vol 43 (10) ◽  
pp. 2376-2382 ◽  
Author(s):  
Zhengxian Gu ◽  
Mark A. Wainberg ◽  
Nghe Nguyen-Ba ◽  
Lucille L’Heureux ◽  
Jean-Marc de Muys ◽  
...  

ABSTRACT (−)-β-d-1′,3′-Dioxolane guanosine (DXG) and 2,6-diaminopurine (DAPD) dioxolanyl nucleoside analogues have been reported to be potent inhibitors of human immunodeficiency virus type 1 (HIV-1). We have recently conducted experiments to more fully characterize their in vitro anti-HIV-1 profiles. Antiviral assays performed in cell culture systems determined that DXG had 50% effective concentrations of 0.046 and 0.085 μM when evaluated against HIV-1IIIB in cord blood mononuclear cells and MT-2 cells, respectively. These values indicate that DXG is approximately equipotent to 2′,3′-dideoxy-3′-thiacytidine (3TC) but 5- to 10-fold less potent than 3′-azido-2′,3′-dideoxythymidine (AZT) in the two cell systems tested. At the same time, DAPD was approximately 5- to 20-fold less active than DXG in the anti-HIV-1 assays. When recombinant or clinical variants of HIV-1 were used to assess the efficacy of the purine nucleoside analogues against drug-resistant HIV-1, it was observed that AZT-resistant virus remained sensitive to DXG and DAPD. Virus harboring a mutation(s) which conferred decreased sensitivity to 3TC, 2′,3′-dideoxyinosine, and 2′,3′-dideoxycytidine, such as a 65R, 74V, or 184V mutation in the viral reverse transcriptase (RT), exhibited a two- to fivefold-decreased susceptibility to DXG or DAPD. When nonnucleoside RT inhibitor-resistant and protease inhibitor-resistant viruses were tested, no change in virus sensitivity to DXG or DAPD was observed. In vitro drug combination assays indicated that DXG had synergistic antiviral effects when used in combination with AZT, 3TC, or nevirapine. In cellular toxicity analyses, DXG and DAPD had 50% cytotoxic concentrations of greater than 500 μM when tested in peripheral blood mononuclear cells and a variety of human tumor and normal cell lines. The triphosphate form of DXG competed with the natural nucleotide substrates and acted as a chain terminator of the nascent DNA. These data suggest that DXG triphosphate may be the active intracellular metabolite, consistent with the mechanism by which other nucleoside analogues inhibit HIV-1 replication. Our results suggest that the use of DXG and DAPD as therapeutic agents for HIV-1 infection should be explored.


2009 ◽  
Vol 16 (7) ◽  
pp. 1060-1065 ◽  
Author(s):  
Odd Odinsen ◽  
David Parker ◽  
Frans Radebe ◽  
Mikey Guness ◽  
David A Lewis

ABSTRACT Diagnosis of acute human immunodeficiency virus (HIV) infection, a key driver of the HIV epidemic, remains a public health challenge. The PlasmAcute technology offers an opportunity to detect early anti-HIV antibody responses. B lymphocytes (B cells) were isolated from the blood of seronegative miners in South Africa by using the PlasmAcute method. B-cell lysates and paired sera were tested for anti-HIV-1 antibodies by two different enzyme-linked immunosorbent assays; immunoreactivity was confirmed by Western blotting. All volunteers were tested for HIV type 1 (HIV-1) viral load, p24 antigen, and CD4 count. Sera from HIV-seronegative men who had positive viral loads and were positive for p24 antigen were retested for anti-HIV antibodies after immune complex dissociation. Anti-HIV antibodies were detected in lysates from 16/259 subjects without immunoreactivity in paired sera. Four subjects, one of whom had a positive viral load initially, subsequently seroconverted. Six subjects showed transient anti-HIV-1 antibodies in the lysates and tested negative for all markers at the follow-up. Five subjects without follow-up data initially had lysate-positive/serum-negative samples, and these cases were classified as inconclusive. One subject had lysate antibodies and a detectable viral load but was seronegative at follow-up. In conclusion, lysate-derived anti-HIV-1 B-cell antibodies can be detected prior to seroconversion and earlier than or contemporary with HIV-1 RNA detection.


1998 ◽  
Vol 9 (5) ◽  
pp. 412-421 ◽  
Author(s):  
C Chamorro ◽  
M-J Camarasa ◽  
M-J Pérez-Pérez ◽  
E de Clercq ◽  
J Balzarini ◽  
...  

Novel derivatives of the potent human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) inhibitor TSAO-T have been designed, synthesized and tested for their in vitro antiretro-viral activity against HIV. These TSAO-T derivatives have been designed as potential bidentate inhibitors of HIV-1 RT, which combine in their structure the functionality of a non-nucleoside RT inhibitor (TSAO-T) and a bivalent ion-chelating moiety (a β-diketone moiety) linked through an appropriate spacer to the N-3 of thymine of TSAO-T . Some of the new compounds have an anti-HIV-1 activity comparable to that of the parent compound TSAO-T, but display a markedly increased antiviral selectivity. There was a clear relationship between antiviral activity and the length of the spacer group that links the TSAO molecule with the chelating moiety. A shorter spacer invariably resulted in increased antiviral potency. None of the TSAO-T derivatives were endowed with anti-HIV-2 activity.


2006 ◽  
Vol 87 (2) ◽  
pp. 411-418 ◽  
Author(s):  
David Marchant ◽  
Stuart J. D. Neil ◽  
Áine McKnight

This study compares the replication of primary isolates of human immunodeficiency virus type 2 (HIV-2) and type 1 (HIV-1) in monocyte-derived macrophages (MDMs). Eleven HIV-2 and five HIV-1 primary isolates that use CCR5, CXCR4 or both coreceptors to enter cells were included. Regardless of coreceptor preference, 10 of 11 HIV-2 viruses could enter, reverse transcribe and produce fully infectious virus in MDMs with efficiency equal to that in peripheral blood mononuclear cells. However, the kinetics of replication of HIV-2 compared with HIV-1 over time were distinct. HIV-2 had a burst of virus replication 2 days after infection that resolved into an apparent ‘latent state’ at day 3. HIV-1, however, continued to produce infectious virions at a lower, but steady, rate throughout the course of infection. These results may have implications for the lower pathogenesis and viral-load characteristics of HIV-2 infection.


Sign in / Sign up

Export Citation Format

Share Document