scholarly journals Human immunodeficiency virus types 1 and 2 have different replication kinetics in human primary macrophage culture

2006 ◽  
Vol 87 (2) ◽  
pp. 411-418 ◽  
Author(s):  
David Marchant ◽  
Stuart J. D. Neil ◽  
Áine McKnight

This study compares the replication of primary isolates of human immunodeficiency virus type 2 (HIV-2) and type 1 (HIV-1) in monocyte-derived macrophages (MDMs). Eleven HIV-2 and five HIV-1 primary isolates that use CCR5, CXCR4 or both coreceptors to enter cells were included. Regardless of coreceptor preference, 10 of 11 HIV-2 viruses could enter, reverse transcribe and produce fully infectious virus in MDMs with efficiency equal to that in peripheral blood mononuclear cells. However, the kinetics of replication of HIV-2 compared with HIV-1 over time were distinct. HIV-2 had a burst of virus replication 2 days after infection that resolved into an apparent ‘latent state’ at day 3. HIV-1, however, continued to produce infectious virions at a lower, but steady, rate throughout the course of infection. These results may have implications for the lower pathogenesis and viral-load characteristics of HIV-2 infection.

2006 ◽  
Vol 80 (14) ◽  
pp. 7208-7218 ◽  
Author(s):  
Jonathan L. Heeney ◽  
Erik Rutjens ◽  
Ernst J. Verschoor ◽  
Henk Niphuis ◽  
Peter ten Haaft ◽  
...  

ABSTRACT Current data suggest that the human immunodeficiency virus type 1 (HIV-1) epidemic arose by transmission of simian immunodeficiency virus (SIV) SIVcpz from a subspecies of common chimpanzees (Pan troglodytes troglodytes) to humans. SIVcpz of chimpanzees is itself a molecular chimera of SIVs from two or more different monkey species, suggesting that recombination was made possible by coinfection of one individual animal with different lentiviruses. However, very little is known about SIVcpz transmission and the susceptibility to lentivirus coinfection of its natural host, the chimpanzee. Here, it is revealed that either infected plasma or peripheral blood mononuclear cells readily confer infection when exposure occurs by the intravenous or mucosal route. Importantly, the presence of preexisting HIV-1 infection did not modify the kinetics of SIVcpz infection once it was established by different routes. Although humoral responses appeared as early as 4 weeks postinfection, neutralization to SIVcpz-ANT varied markedly between animals. Analysis of the SIVcpz env sequence over time revealed the emergence of genetic viral variants and persistent SIVcpz RNA levels of between 104 and 105 copies/ml plasma regardless of the presence or absence of concurrent HIV-1 infection. These unique data provide important insight into possible routes of transmission, the kinetics of acute SIVcpz infection, and how readily coinfection with SIVcpz and other lentiviruses may be established as necessary preconditions for potential recombination.


2009 ◽  
Vol 53 (8) ◽  
pp. 3565-3568 ◽  
Author(s):  
Secondo Sonza ◽  
Adam Johnson ◽  
David Tyssen ◽  
Tim Spelman ◽  
Gareth R. Lewis ◽  
...  

ABSTRACT Polyanion-based microbicides have been developed to prevent the sexual transmission of human immunodeficiency virus (HIV). Recent data suggest that polyanions have the capacity to enhance HIV type 1 (HIV-1) replication at threshold antiviral concentrations. Evaluation of the microbicide candidates SPL7013 and PRO 2000 revealed no specific enhancement of two CCR5 HIV-1 strains in human peripheral blood mononuclear cells compared to enfuvirtide (Fuzeon). The enhancement effect is likely to be a function of the assay conditions and is not an intrinsic property of these polyanions.


1996 ◽  
Vol 40 (6) ◽  
pp. 1491-1497 ◽  
Author(s):  
J A Bilello ◽  
P A Bilello ◽  
K Stellrecht ◽  
J Leonard ◽  
D W Norbeck ◽  
...  

The therapeutic utility of a human immunodeficiency virus type 1 (HIV-1) protease inhibitor may depend on its intracellular concentration, which is a property of its uptake, metabolism, and/or efflux. Previous studies in our laboratory indicated that the addition of alpha 1 acid glycoprotein (alpha 1 AGP) to the medium markedly increased the amount of the drug required to limit infection in vitro. In this study, physiologically relevant concentrations of alpha 1 AGP and a radiolabeled inhibitor, A-80987, were used to determine both the uptake and activity of the agent in HIV-1-infected human peripheral blood mononuclear cells and cell lines. Both the uptake and efflux of 14C-labeled A-80987 were rapid (t1/2, < 5 min). Uptake of the drug was linearly dependent on the concentration but insensitive to the metabolic inhibitors KF, sodium cyanide, or CCCP (carbonyl cyanide m-chlorophenyl hydrazone). The amount of A-80987 which entered the cells was inversely proportional to the concentration of alpha 1 AGP (r2, 0.99) and directly proportional to the amount of extracellular non-protein-bound drug (r2, 0.99). Most importantly, the antiviral activity of the drug in HIV-1-infected peripheral blood mononuclear cells and MT-2 cells was directly related to the amount of intracellular A-80987. This study demonstrates that A-80987 binds to alpha 1 AGP, resulting in a free fraction below 10%. Cellular uptake of A-80987 is proportionally decreased in the presence of alpha 1 AGP, which results in less-than-expected antiviral activity. Importantly, we demonstrate for the first time that the inhibition of HIV protease is highly correlated with the amount of intracellular inhibitor.


2001 ◽  
Vol 75 (17) ◽  
pp. 7973-7986 ◽  
Author(s):  
Mario Janini ◽  
Melissa Rogers ◽  
Deborah R. Birx ◽  
Francine E. McCutchan

ABSTRACT G-to-A hypermutation has been sporadically observed in human immunodeficiency virus type 1 (HIV-1) proviral sequences from patient peripheral blood mononuclear cells (PBMC) and virus cultures but has not been systematically evaluated. PCR primers matched to normal and hypermutated sequences were used in conjunction with an agarose gel electrophoresis system incorporating an AT-binding dye to visualize, separate, clone, and sequence hypermutated and normal sequences in the 297-bp HIV-1 protease gene amplified from patient PBMC. Among 53 patients, including individuals infected with subtypes A through D and at different clinical stages, at least 43% of patients harbored abundant hypermutated, along with normal, protease genes. In 70 hypermutated sequences, saturation of G residues in the GA or GG dinucleotide context ranged from 20 to 94%. Levels of other mutants were not elevated, and G-to-A replacement was entirely restricted to GA or GG, and not GC or GT, dinucleotides. Sixty-nine of 70 hypermutated and 3 of 149 normal sequences had in-frame stop codons. To investigate the conditions under which hypermutation occurs in cell cultures, purified CD4+ T cells from normal donors were infected with cloned NL4-3 virus stocks at various times before and after phytohemagglutinin (PHA) activation. Hypermutation was pronounced when HIV-1 infection occurred simultaneously with, or a few hours after, PHA activation, but after 12 h or more after PHA activation, most HIV-1 sequences were normal. Hypermutated sequences generated in culture corresponded exactly in all parameters to those obtained from patient PBMC. Near-simultaneous activation and infection of CD4+ T cells may represent a window of susceptibility where the informational content of HIV-1 sequences is lost due to hypermutation.


2000 ◽  
Vol 44 (8) ◽  
pp. 2093-2099 ◽  
Author(s):  
Brett S. Robinson ◽  
Keith A. Riccardi ◽  
Yi-fei Gong ◽  
Qi Guo ◽  
David A. Stock ◽  
...  

ABSTRACT BMS-232632 is an azapeptide human immunodeficiency virus type 1 (HIV-1) protease (Prt) inhibitor that exhibits potent anti-HIV activity with a 50% effective concentration (EC50) of 2.6 to 5.3 nM and an EC90 of 9 to 15 nM in cell culture. Proof-of-principle studies indicate that BMS-232632 blocks the cleavage of viral precursor proteins in HIV-infected cells, proving that it functions as an HIV Prt inhibitor. Comparative studies showed that BMS-232632 is generally more potent than the five currently approved HIV-1 Prt inhibitors. Furthermore, BMS-232632 is highly selective for HIV-1 Prt and exhibits cytotoxicity only at concentrations 6,500- to 23,000-fold higher than that required for anti-HIV activity. To assess the potential of this inhibitor when used in combination with other antiretrovirals, BMS-232632 was evaluated for anti-HIV activity in two-drug combination studies. Combinations of BMS-232632 with either stavudine, didanosine, lamivudine, zidovudine, nelfinavir, indinavir, ritonavir, saquinavir, or amprenavir in HIV-infected peripheral blood mononuclear cells yielded additive to moderately synergistic antiviral effects. Importantly, combinations of drug pairs did not result in antagonistic anti-HIV activity or enhanced cytotoxic effects at the highest concentrations used for antiviral evaluation. Our results suggest that BMS-232632 may be an effective HIV-1 inhibitor that may be utilized in a variety of different drug combinations.


2007 ◽  
Vol 52 (2) ◽  
pp. 655-665 ◽  
Author(s):  
Tomas Cihlar ◽  
Adrian S. Ray ◽  
Constantine G. Boojamra ◽  
Lijun Zhang ◽  
Hon Hui ◽  
...  

ABSTRACT GS-9148 [(5-(6-amino-purin-9-yl)-4-fluoro-2,5-dihydro-furan-2-yloxymethyl)phosphonic acid] is a novel ribose-modified human immunodeficiency virus type 1 (HIV-1) nucleotide reverse transcriptase (RT) inhibitor (NRTI) selected from a series of nucleoside phosphonate analogs for its favorable in vitro biological properties including (i) a low potential for mitochondrial toxicity, (ii) a minimal cytotoxicity in renal proximal tubule cells and other cell types, (iii) synergy in combination with other antiretrovirals, and (iv) a unique resistance profile against multiple NRTI-resistant HIV-1 strains. Notably, antiviral resistance analysis indicated that neither the K65R, L74V, or M184V RT mutation nor their combinations had any effect on the antiretroviral activity of GS-9148. Viruses carrying four or more thymidine analog mutations showed a substantially smaller change in GS-9148 activity relative to that observed with most marketed NRTIs. GS-9131, an ethylalaninyl phosphonoamidate prodrug designed to maximize the intracellular delivery of GS-9148, is a potent inhibitor of multiple subtypes of HIV-1 clinical isolates, with a mean 50% effective concentration of 37 nM. Inside cells, GS-9131 is readily hydrolyzed to GS-9148, which is further phosphorylated to its active diphosphate metabolite (A. S. Ray, J. E. Vela, C. G. Boojamra, L. Zhang, H. Hui, C. Callebaut, K. Stray, K.-Y. Lin, Y. Gao, R. L. Mackman, and T. Cihlar, Antimicrob. Agents Chemother. 52:648-654, 2008). GS-9148 diphosphate acts as a competitive inhibitor of RT with respect to dATP (Ki = 0.8 μM) and exhibits low inhibitory potency against host polymerases including DNA polymerase γ. Oral administration of GS-9131 to beagle dogs at a dose of 3 mg/kg of body weight resulted in high and persistent levels of GS-9148 diphosphate in peripheral blood mononuclear cells (with a maximum intracellular concentration of >9 μM and a half-life of >24 h). This favorable preclinical profile makes GS-9131 an attractive clinical development candidate for the treatment of patients infected with NRTI-resistant HIV.


2001 ◽  
Vol 75 (13) ◽  
pp. 5812-5822 ◽  
Author(s):  
Brian R. Lane ◽  
Robert M. Strieter ◽  
Michael J. Coffey ◽  
David M. Markovitz

ABSTRACT We examined the early effects of infection by CCR5-using (R5 human immunodeficiency virus [HIV]) and CXCR4-using (X4 HIV) strains of HIV type 1 (HIV-1) on chemokine production by primary human monocyte-derived macrophages (MDM). While R5 HIV, but not X4 HIV, replicated in MDM, we found that the production of the C-X-C chemokine growth-regulated oncogene alpha (GRO-α) was markedly stimulated by X4 HIV and, to a much lesser extent, by R5 HIV. HIV-1 gp120 engagement of CXCR4 initiated the stimulation of GRO-α production, an effect blocked by antibodies to CXCR4. GRO-α then fed back and stimulated HIV-1 replication in both MDM and lymphocytes, and antibodies that neutralize GRO-α or CXCR2 (the receptor for GRO-α) markedly reduced viral replication in MDM and peripheral blood mononuclear cells. Therefore, activation of MDM by HIV-1 gp120 engagement of CXCR4 initiates an autocrine-paracrine loop that may be important in disease progression after the emergence of X4 HIV.


2003 ◽  
Vol 77 (15) ◽  
pp. 8329-8335 ◽  
Author(s):  
M. K. Hill ◽  
M. Shehu-Xhilaga ◽  
S. M. Campbell ◽  
P. Poumbourios ◽  
S. M. Crowe ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) contains two copies of genomic RNA that are noncovalently linked via a palindrome sequence within the dimer initiation site (DIS) stem-loop. In contrast to the current paradigm that the DIS stem or stem-loop is critical for HIV-1 infectivity, which arose from studies using T-cell lines, we demonstrate here that HIV-1 mutants with deletions in the DIS stem-loop are replication competent in peripheral blood mononuclear cells (PBMCs). The DIS mutants contained either the wild-type (5′GCGCGC3′) or an arbitrary (5′ACGCGT3′) palindrome sequence in place of the 39-nucleotide DIS stem-loop (NLCGCGCG and NLACGCGT). These DIS mutants were replication defective in SupT1 cells, concurring with the current model in which DIS mutants are replication defective in T-cell lines. All of the HIV-1 DIS mutants were replication competent in PBMCs over a 40-day infection period and had retained their respective DIS mutations at 40 days postinfection. Although the stability of the virion RNA dimer was not affected by our DIS mutations, the RNA dimers exhibited a diffuse migration profile when compared to the wild type. No defect in protein processing of the Gag and GagProPol precursor proteins was found in the DIS mutants. Our data provide direct evidence that the DIS stem-loop is dispensable for viral replication in PBMCs and that the requirement of the DIS stem-loop in HIV-1 replication is cell type dependent.


1999 ◽  
Vol 37 (5) ◽  
pp. 1260-1264 ◽  
Author(s):  
Marek Fischer ◽  
Werner Huber ◽  
Alex Kallivroussis ◽  
Peter Ott ◽  
Milos Opravil ◽  
...  

Precise and sensitive quantitation of viral RNA in specimens from human immunodeficiency virus (HIV) type 1 (HIV-1)-infected individuals has become an indispensable tool for the monitoring of the efficacy of highly active antiretroviral combination therapy. The present report describes reproducible and efficient protocols with enhanced sensitivity for quantitation of HIV-1 RNA from plasma, peripheral blood mononuclear cells, and tissues with Qiagen silica columns for RNA purification combined with the Roche Amplicor HIV-1 Monitor test for quantitative reverse transcription-PCR (RT-PCR). Extraction of RNA from 0.5 ml of plasma resulted in the detection of fewer than 20 HIV RNA copies/ml of plasma, equivalent to the centrifugation-based boosted RT-PCR assay. Silica extraction of cellular RNA resulted in the detection of fewer than 3 HIV-1 RNA copies/μg of total RNA. These techniques facilitate direct comparisons of viral loads between liquid and cellular specimens. Application of these sensitive methods may improve the assessment of the response to new antiretroviral regimens.


1999 ◽  
Vol 43 (3) ◽  
pp. 492-497 ◽  
Author(s):  
Mika Okamoto ◽  
Takashi Okamoto ◽  
Masanori Baba

ABSTRACT 8 - Difluoromethoxy - 1 - ethyl - 6 - fluoro - 1,4 - dihydro - 7 - [4 - (2 - methoxyphenyl) - 1 - piperazinyl] - 4 - oxoquinoline - 3 - carboxylic acid (K-12) has recently been identified as a potent and selective inhibitor of human immunodeficiency virus type 1 (HIV-1) transcription. In this study, we examined several combinations of K-12 and other antiretroviral agents for their inhibitory effects on HIV-1 replication in acutely and chronically infected cell cultures. Combinations of K-12 and a reverse transcriptase (RT) inhibitor, either zidovudine, lamivudine, or nevirapine, synergistically inhibited HIV-1 replication in acutely infected MT-4 cells. The combination of K-12 and the protease inhibitor nelfinavir (NFV) also synergistically inhibited HIV-1, whereas the synergism of this combination was weaker than that of the combinations with the RT inhibitors. K-12 did not enhance the cytotoxicities of RT and protease inhibitors. Synergism of the combinations was also observed in acutely infected peripheral blood mononuclear cells. The combination of K-12 and cepharanthine, a nuclear factor κB inhibitor, synergistically inhibited HIV-1 production in tumor necrosis factor alpha-stimulated U1 cells, a promonocytic cell line chronically infected with the virus. In contrast, additive inhibition was observed for the combination of K-12 and NFV. These results indicate that the combinations of K-12 and clinically available antiretroviral agents may have potential as chemotherapeutic modalities for the treatment of HIV-1 infection.


Sign in / Sign up

Export Citation Format

Share Document