Robust steering control for trajectory following in road traffic environments

Author(s):  
Parth Deshpande ◽  
KB Devika ◽  
Shankar C Subramanian ◽  
Lelitha Devi Vanajakshi

The process of modelling vehicle motion in a road traffic environment requires the integration of trajectory generation with vehicle control. The steps involved here are generating a feasible trajectory based on the existing traffic and tracking the trajectory to control it with a steering angle input. Since the parameters of a physical system vary with changes in operating conditions, it is important to consider robustness when designing controllers. This article aims at developing a trajectory-following model with robust steering control strategies to accurately follow a generated trajectory. In this study, performance-based proportional, robust proportional and sliding mode control strategies are designed for trajectory following. The robustness of the proportional controller is established using Kharitonov’s theorem, which is compared with a proportional controller tuned for performance. Sliding mode control is designed for robustness and chattering elimination using two kinds of reaching laws – a constant reaching law and a novel power rate exponential reaching law. The controllers are designed using a dynamic bicycle model considering the error with respect to the trajectory. The controllers are then evaluated in IPG CarMaker®. The resulting trajectories and control inputs are compared for the considered control methodologies using the ISO double lane change and the Slalom tests. Sliding mode control with power rate exponential reaching law is concluded to be more robust as compared to the other controllers, with lower response times, up to 84% lower heading angle deviations from the trajectory and an overshoot of only 3.2% in lane changing.

Energies ◽  
2017 ◽  
Vol 10 (11) ◽  
pp. 1788 ◽  
Author(s):  
Linyun Xiong ◽  
Penghan Li ◽  
Hao Li ◽  
Jie Wang

2015 ◽  
Vol 741 ◽  
pp. 655-658 ◽  
Author(s):  
Cai Yun Dong ◽  
Hai Jun Wang ◽  
Wen Yong Cui

The sliding mode control approach based on double power exponential reaching law is proposed for the hydraulic servo system. With the example of the hydraulic servo system in the lab, the mathematic model is established and the new controller is presented and simulated. Simulation results show that: the proposed approach has high track precision, fast response, small chattering and ensures dynamic quality of the system.


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1776
Author(s):  
Changhong Jiang ◽  
Qiming Wang ◽  
Zonghao Li ◽  
Niaona Zhang ◽  
Haitao Ding

When a permanent magnet synchronous motor runs at low speed, the inverter will output discontinuous current and generate torque ripple; when the motor is runs at high speed, a large amount of stator harmonic current generates, which affects its speed following ability and torque stability. To ensure the fast and smooth switching of a permanent magnet synchronous motor in the full speed domain, this paper proposes the nonsingular terminal sliding mode control of PMSM speed control based on the improved exponential reaching law. Firstly, the improved exponential reaching law is composed of the state variables and power terms of the sliding mode surface functions. The reaching law function is designed in sections to balance the fast dynamic response of the system and chattering control. Secondly, an improved exponential reaching law based on the sliding mode control strategy of the PMSM speed loop is proposed. By designing the initial value of the integral term in the nonsingular terminal sliding mode surface function, the initial state of the system is located on the sliding mode surface. The integral sliding mode surface is used to reduce the system steady-state error, while the proposed sliding mode reaching law is used to increase the arrival speed and suppress system chattering, ultimately affecting modeling error problems, complex working conditions, and uncertainty factors. This paper proposes a sliding mode observer based on an improved exponential reaching law to compensate for the disturbances. Lyapunov stability theory can prove that this system can make the speed tracking error converge to zero in finite time. Hardware-in-the-loop experiments were used to validate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document