A 7000 year record of paleohurricane activity from a coastal wetland in Belize

The Holocene ◽  
2012 ◽  
Vol 23 (2) ◽  
pp. 278-291 ◽  
Author(s):  
Terrence A McCloskey ◽  
Kam-biu Liu

Sedimentary paleotempestological studies have documented that tropical cyclone activity levels in the North Atlantic have been characterized by significant fluctuations since at least the mid Holocene, with activity regimes typically lasting from several centuries to > 2000 years. These activity-level estimates are based on site-specific hurricane strike histories derived from proxy records of overwash events attributed to landfalling major hurricanes. Here we present a 7000 year composite record from two adjacent wetland sites in coastal Belize, Central America that records both tropical cyclone-generated storm surges and large precipitation events. Although overall sensitivity appears to decrease over time, this record displays clear evidence of continuous oscillation between distinctly different activity regimes, with active and quiet periods each covering ~ 50% of the record. Active periods occur during ~200–600 BP, 1450–2600 BP, 3200–4200 BP, 4750–5450 BP, 5750–6050 BP, and 6700–6900 BP. This activity pattern does not match regional records from the northern Gulf of Mexico, the northern Caribbean or the Atlantic coast of the USA, thereby supporting the view that activity patterns are temporally variable throughout the North Atlantic, and that hyperactivity does not occur simultaneously across the entire basin.

2015 ◽  
Vol 112 (41) ◽  
pp. 12610-12615 ◽  
Author(s):  
Andra J. Reed ◽  
Michael E. Mann ◽  
Kerry A. Emanuel ◽  
Ning Lin ◽  
Benjamin P. Horton ◽  
...  

In a changing climate, future inundation of the United States’ Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850–1800) and anthropogenic era (A.D.1970–2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2014 ◽  
Vol 41 (12) ◽  
pp. 4300-4307 ◽  
Author(s):  
Paige E. Newby ◽  
Bryan N. Shuman ◽  
Jeffrey P. Donnelly ◽  
Kristopher B. Karnauskas ◽  
Jeremiah Marsicek

1911 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Edwin M. Borchardt

2021 ◽  
pp. 1-38
Author(s):  
Xi Guo ◽  
James P. Kossin ◽  
Zhe-Min Tan

AbstractTropical cyclone (TC) translation speed (TCTS) can affect the duration of TC-related disasters, which is critical to coastal and inland areas. The long-term variation of TCTS and their relationship to the variability of the mid-latitude jet stream and storm migration are discussed here for storms near the North Atlantic coast during 1948-2019. Our results reveal the prominent seasonality in the long-term variation of TCTS, which can be largely explained by the seasonality in the covariations of the mid-latitude jet stream and storm locations. Specifically, significant increases of TCTS occur in June and October during the past decades, which may result from the equatorward displacement of the jet stream and poleward migration of storm locations. Prominent slowdown of TCTS is found in August, which is related to the weakened jet strength and equatorward storm migration. In September, the effects of poleward displacement and weakening of the jet stream on TCTS are largely compensated by the poleward storm migration, therefore, no significant change in TCTS is observed. Meanwhile, the multidecadal variability of the Atlantic may contribute to the multidecadal variability of TCTS. Our findings emphasize the significance in taking a seasonality view in discussing the variability and trends of near-coast Atlantic TCTS under climate change.


Sign in / Sign up

Export Citation Format

Share Document