Mid- to late-Holocene East Asian summer monsoon variability recorded in lacustrine sediments from Jingpo Lake, Northeastern China

The Holocene ◽  
2014 ◽  
Vol 25 (3) ◽  
pp. 454-468 ◽  
Author(s):  
Rong Chen ◽  
Ji Shen ◽  
Chunhai Li ◽  
Enlou Zhang ◽  
Weiwei Sun ◽  
...  
2018 ◽  
Vol 45 (15) ◽  
pp. 7711-7718 ◽  
Author(s):  
Richard Ching Wa Cheung ◽  
Moriaki Yasuhara ◽  
Briony Mamo ◽  
Kota Katsuki ◽  
Koji Seto ◽  
...  

2015 ◽  
Vol 115 ◽  
pp. 132-142 ◽  
Author(s):  
Youbin Sun ◽  
John Kutzbach ◽  
Zhisheng An ◽  
Steven Clemens ◽  
Zhengyu Liu ◽  
...  

2016 ◽  
Vol 449 ◽  
pp. 510-519 ◽  
Author(s):  
Kan Zhao ◽  
Yongjin Wang ◽  
R. Lawrence Edwards ◽  
Hai Cheng ◽  
Dianbing Liu ◽  
...  

2020 ◽  
Vol 33 (18) ◽  
pp. 7945-7965 ◽  
Author(s):  
J. C. H. Chiang ◽  
W. Kong ◽  
C. H. Wu ◽  
D. S. Battisti

AbstractThe East Asian summer monsoon is unique among summer monsoon systems in its complex seasonality, exhibiting distinct intraseasonal stages. Previous studies have alluded to the downstream influence of the westerlies flowing around the Tibetan Plateau as key to its existence. We explore this hypothesis using an atmospheric general circulation model that simulates the intraseasonal stages with fidelity. Without a Tibetan Plateau, East Asia exhibits only one primary convective stage typical of other monsoons. As the plateau is introduced, the distinct rainfall stages—spring, pre-mei-yu, mei-yu, and midsummer—emerge, and rainfall becomes more intense overall. This emergence coincides with a pronounced modulation of the westerlies around the plateau and extratropical northerlies penetrating northeastern China. The northerlies meridionally constrain the moist southerly flow originating from the tropics, leading to a band of lower-tropospheric convergence and humidity front that produces the rainband. The northward migration of the westerlies away from the northern edge of the plateau leads to a weakening of the extratropical northerlies, which, coupled with stronger monsoonal southerlies, leads to the northward migration of the rainband. When the peak westerlies migrate north of the plateau during the midsummer stage, the extratropical northerlies disappear, leaving only the monsoon low-level circulation that penetrates northeastern China; the rainband disappears, leaving isolated convective rainfall over northeastern China. In short, East Asian rainfall seasonality results from the interaction of two seasonally evolving circulations—the monsoonal southerlies that strengthen and extend northward, and the midlatitude northerlies that weaken and eventually disappear—as summer progresses.


The Holocene ◽  
2018 ◽  
Vol 28 (10) ◽  
pp. 1631-1641 ◽  
Author(s):  
Na Zhang ◽  
Yan Yang ◽  
Hai Cheng ◽  
Jingyao Zhao ◽  
Xunlin Yang ◽  
...  

We present a continuous C-O isotope series that shows the detailed variability of East Asian summer monsoon (EASM) since 11.0 ka BP. The series is based on two stalagmites, namely, DSY1 and LM2, which were, respectively, obtained from Dongshiya and Laomu caves. The δ18O profiles of stalagmite excurse negatively in early Holocene and gradually become positive after around 6.9 ka BP, tracking the change in Northern Hemisphere summer insolation. Moreover, the ‘early-Holocene maximum’ supported by stalagmite δ18O records differs from the ‘mid-Holocene maximum’ indicated by geological archives, such as lake sediments and loess. This difference may be caused by different definition indicators of monsoon intensity. Stalagmite δ18O is relative to EASM intensity, but irrelative to precipitation in the East Asian monsoon region. The time intervals of EASM maximum and Holocene climatic optimum are desynchronized, which is confirmed by the variation in the stalagmite δ13C series. Stalagmite δ13C and δ18O have different variation tendencies. The tendency of δ13C in early mid-Holocene was generally light, but it was discontinuity and disrupted by rapid positive shift between 8.2 and 7.7 ka BP. We conclude that a rapid shift of about 8 ka BP is a turning point, before and after which δ13 C acquires different controlling factors. Stalagmite δ13 C showed no signs of positive excurse in late Holocene but it exhibited another characteristic, namely, millennial time scale oscillations. The few changes in stalagmite δ13 C is attributed to weakened insolation during summer in the northern hemisphere, which leads to low evaporation rate, thereby modulating effective humidity change. The edge of the seasonal monsoonal front in northern China during monsoon recession is sensitive to the rain belt and causes the δ13 C of the stalagmite to fluctuate greatly. This phenomenon shows that the climate in the study area is unstable in the late Holocene


Sign in / Sign up

Export Citation Format

Share Document