climate anomaly
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 35)

H-INDEX

26
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Helen Mackay ◽  
Gill Plunkett ◽  
Britta Jensen ◽  
Thomas Aubry ◽  
Christophe Corona ◽  
...  

Abstract. The 852/3 CE eruption of Mount Churchill, Alaska, was one of the largest first millennium volcanic events, with a magnitude of 6.7 (VEI 6) and a tephra volume of 39.4–61.9 km3 (95 % confidence). The spatial extent of the ash fallout from this event is considerable and the cryptotephra (White River Ash east; WRAe) extends as far as Finland and Poland. Proximal ecosystem and societal disturbances have been linked with this eruption; however, wider eruption impacts on climate and society are unknown. Greenland ice-core records show that the eruption occurred in winter 852/3 ± 1 CE and that the eruption is associated with a relatively moderate sulfate aerosol loading, but large abundances of volcanic ash and chlorine. Here we assess the potential broader impact of this eruption using palaeoenvironmental reconstructions, historical records and climate model simulations. We also use the fortuitous timing of the 852/3 CE Churchill eruption and its extensively widespread tephra deposition of the White River Ash (east) (WRAe) to examine the climatic expression of the warm Medieval Climate Anomaly period (MCA; ca. 950–1250 CE) from precisely linked peatlands in the North Atlantic region. The reconstructed climate forcing potential of 852/3 CE Churchill eruption is moderate compared with the eruption magnitude, but tree-ring-inferred temperatures report a significant atmospheric cooling of 0.8 °C in summer 853 CE. Modelled climate scenarios also show a cooling in 853 CE, although the average magnitude of cooling is smaller (0.3 °C). The simulated spatial patterns of cooling are generally similar to those generated using the tree-ring-inferred temperature reconstructions. Tree-ring inferred cooling begins prior to the date of the eruption suggesting that natural internal climate variability may have increased the climate system’s susceptibility to further cooling. The magnitude of the reconstructed cooling could also suggest that the climate forcing potential of this eruption may be underestimated, thereby highlighting the need for greater insight into, and consideration of, the role of halogens and volcanic ash when estimating eruption climate forcing potential. Precise comparisons of palaeoenvironmental records from peatlands across North America and Europe, facilitated by the presence of the WRAe isochron, reveal no consistent MCA signal. These findings contribute to the growing body of evidence that characterizes the MCA hydroclimate as time-transgressive and heterogeneous, rather than a well-defined climatic period. The presence of the WRAe isochron also demonstrates that no long-term (multidecadal) climatic or societal impacts from the 852/3 CE Churchill eruption were identified beyond areas proximal to the eruption. Historical evidence in Europe for subsistence crises demonstrate a degree of temporal correspondence on interannual timescales, but similar events were reported outside of the eruption period and were common in the 9th century. The 852/3 CE Churchill eruption exemplifies the difficulties of identifying and confirming volcanic impacts for a single eruption, even when it is precisely dated.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Ting-Yong Li ◽  
Jonathan L. Baker ◽  
Tao Wang ◽  
Jian Zhang ◽  
Yao Wu ◽  
...  

AbstractRapid permafrost degradation and peatland expansion occurred in Eurasia during the Early Holocene and may be analogous to the region’s response to anthropogenic warming. Here we present a 230Th-dated, multiproxy speleothem record with subdecadal sampling resolution from Kyok-Tash Cave, at the modern permafrost margin in the northern Altai Mountains, southwestern Siberia. Stalagmite K4, covering the period 11,400 to 8,900 years before present, indicates an absence of stable permafrost within three centuries of the Younger Dryas termination. Between 11,400 and 10,400 years ago, speleothem δ18O is antiphased between the Altai and Ural ranges, suggesting a reorganization of the westerly wind systems that led to warmer and wetter winters over West Siberia and Altai, relative to the zonally adjacent regions of Northern Eurasia. At the same time, there is evidence of peak permafrost degradation and peatland expansion in West Siberia, consistent with the interpreted climate anomaly. Based on these findings, we suggest that modern permafrost in Eurasia is sensitive to feedbacks in the ocean-cryosphere system, which are projected to alter circulation regimes over the continent.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 898
Author(s):  
Ibrahim M. Ghandour ◽  
Mohammed H. Aljahdali

Geochemical analysis of the 23 sediment samples collected from a short (0.6 m long) core retrieved from the coastal creek that was previously connecting the northern and southern Al-Shuaiba Lagoons, Red Sea, Saudi Arabia, was accomplished to assess the elemental enrichment levels and the natural and anthropogenic driving forces for this enrichment. Statistical analysis and upcore variation in elemental concentrations enabled subdivision of the core formally into three units, lower, middle, and upper. The enriched elements in the lower and middle units display poor to negative correlations with the enriched elements in the upper unit. The lower unit is enriched in elements (Mo, As, U, and Re) suggesting deposition under anoxic conditions, possibly related to the Medieval Climate Anomaly. The middle unit is enriched in the carbonate-related constituents (CaCO3, Ca, and Sr). The upper unit is enriched in elements that co-vary significantly with Al suggesting increased terrigenous supply associated with the construction of the road between the two lagoons. The enrichment of elements in the lower and middle units is naturally driven, whereas the enrichment of lithogenic elements in the upper unit, though of geogenic origin, is induced after the road construction.


Author(s):  
Zoë A. Thomas ◽  
Scott Mooney ◽  
Haidee Cadd ◽  
Andy Baker ◽  
Chris Turney ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sri Yudawati Cahyarini ◽  
Miriam Pfeiffer ◽  
Lars Reuning ◽  
Volker Liebetrau ◽  
Wolf-Chr. Dullo ◽  
...  

AbstractWe present two 40 year records of monthly coral Sr/Ca ratios from the eastern pole of the Indian Ocean Dipole. A modern coral covers the period from 1968 to 2007. A sub-fossil coral derives from the medieval climate anomaly (MCA) and spans 1100–1140 ad. The modern coral records SST variability in the eastern pole of the Indian Ocean Dipole. A strong correlation is also found between coral Sr/Ca and the IOD index. The correlation with ENSO is asymmetric: the coral shows a moderate correlation with El Niño and a weak correlation with La Niña. The modern coral shows large interannual variability. Extreme IOD events cause cooling > 3 °C (1994, 1997) or ~ 2 °C (2006). In total, the modern coral indicates 32 warm/cool events, with 16 cool and 16 warm events. The MCA coral shows 24 warm/cool events, with 14 cool and 10 warm events. Only one cool event could be comparable to the positive Indian Ocean Dipole in 2006. The seasonal cycle of the MCA coral is reduced (< 50% of to the modern) and the skewness of the Sr/Ca data is lower. This suggests a deeper thermocline in the eastern Indian Ocean associated with a La Niña-like mean state in the Indo-Pacific during the MCA.


2021 ◽  
Author(s):  
Ole Einar Tveito

&lt;p&gt;For many purposes, including the estimation of climate normals, requires long, continuous&amp;#160; and preferably homogeneous time series. Many observation series do not meet these requirements, especially due to modernisation and automation of the observation network. Despite the lack of long series there is still a need to provide climate parameters representing a longer time period than available. An actual problem is the calculation of new standard climate normals for the 1991-2020 period, where normal values need to be assigned also for observation series not meeting the requirements of WMO to estimate climate normals from observations.&amp;#160;&lt;/p&gt;&lt;p&gt;One possible approach to estimate monthly time series is to extract value from gridded climate anomaly fields. In this study this approach is applied to complete time series that will be the basis for calculation of long term reference values.&lt;/p&gt;&lt;p&gt;The calculation of the long term time series is a two step procedure. First monthly anomaly grids based on homogenised data series are produced. The homogenized series provide more stable and reliable spatial estimates than applying non homogenised data. The homogenised data set is also complete ensuring a spatially consistent input throughout the analysis period 1991-2020.&lt;/p&gt;&lt;p&gt;The monthly anomalies for the location of the series to be complete are extracted from the gridded fields. By combining the interpolated anomalies with the observations the long term mean value can be estimated. The study shows that this approach provides reliable estimates of long term values, even with just a few events for calibration. The precision of the estimates depend more on the representativity of the grid estimates than length of the observation series. At locations where the anomaly grids represent the spatial climate variability well, stable estimates are achieved. On the other hand will the estimates at locations where the anomaly grids are less accurate due to sparse data coverage or steep climate gradients lead to estimates with a larger variability, and&amp;#160; thus more uncertain estimates.&amp;#160;&lt;/p&gt;


2021 ◽  
Vol 13 (11) ◽  
pp. 2199
Author(s):  
Athul Kaitheri ◽  
Anthony Mémin ◽  
Frédérique Rémy

Quantifying the mass balance of the Antarctic Ice Sheet (AIS), and the resulting sea level rise, requires an understanding of inter-annual variability and associated causal mechanisms. Very few studies have been exploring the influence of climate anomalies on the AIS and only a vague estimate of its impact is available. Changes to the ice sheet are quantified using observations from space-borne altimetry and gravimetry missions. We use data from Envisat (2002 to 2010) and Gravity Recovery And Climate Experiment (GRACE) (2002 to 2016) missions to estimate monthly elevation changes and mass changes, respectively. Similar estimates of the changes are made using weather variables (surface mass balance (SMB) and temperature) from a regional climate model (RACMO2.3p2) as inputs to a firn compaction (FC) model. Elevation changes estimated from different techniques are in good agreement with each other across the AIS especially in West Antarctica, Antarctic Peninsula, and along the coasts of East Antarctica. Inter-annual height change patterns are then extracted using for the first time an empirical mode decomposition followed by a principal component analysis to investigate for influences of climate anomalies on the AIS. Investigating the inter-annual signals in these regions revealed a sub-4-year periodic signal in the height change patterns. El Niño Southern Oscillation (ENSO) is a climate anomaly that alters, among other parameters, moisture transport, sea surface temperature, precipitation, in and around the AIS at similar frequency by alternating between warm and cold conditions. This periodic behavior in the height change patterns is altered in the Antarctic Pacific (AP) sector, possibly by the influence of multiple climate drivers, like the Amundsen Sea Low (ASL) and the Southern Annular Mode (SAM). Height change anomaly also appears to traverse eastwards from Coats Land to Pine Island Glacier (PIG) regions passing through Dronning Maud Land (DML) and Wilkes Land (WL) in 6 to 8 years. This is indicative of climate anomaly traversal due to the Antarctic Circumpolar Wave (ACW). Altogether, inter-annual variability in the SMB of the AIS is found to be modulated by multiple competing climate anomalies.


Sign in / Sign up

Export Citation Format

Share Document