Maximum flood area during MIS 1 in the Almenara marshland (Western Mediterranean): Benthic foraminifera and sedimentary record

The Holocene ◽  
2018 ◽  
Vol 28 (9) ◽  
pp. 1452-1466 ◽  
Author(s):  
Ana Rodríguez-Pérez ◽  
Ana María Blázquez ◽  
Jordi Guillem ◽  
Juan Usera

The sedimentological and micropaleontological analysis of three mechanical cores in the marshland of Almenara (Valencian Community, Spain) has allowed the reconstruction of the Holocene evolution of this wetland. The cold and dry 8.2-ka event might be represented in Almenara by a massive carbonate precipitation bed, upon which mid- and late-Holocene sediments were subsequently deposited. The direct influence of sea-level changes has been recorded in the two cores (S-4 and S-5) located near the marsh barrier, at 400–450 m from the current coastline. The maximum flood area during MIS 1 (last 11,600 years) is represented in these cores by sediments indicative of different littoral subenvironments (shoreface, foreshore, backshore). These sediments contain typically littoral marine foraminiferal species such as Ammonia beccarii, Rosalina globularis, Asterigerinata mamilla, Adelosina longirostra, Cibicidoides lobatulus, Elphidium macellum, and Bolivina pseudoplicata. The base of these littoral sedimentary materials has been dated as 5480 and 5580 cal. yr BP. At this moment, the inner area (core S-7) was occupied by a restricted oligohaline marsh subject to water-table fluctuations and with scarce individuals of brackish water foraminifera, such as Ammonia tepida, Haynesina germanica, or Cribroelphidium excavatum, that in more recent times (since at least 1700 cal. yr BP) gradually evolved to a palustrine area.

Radiocarbon ◽  
2021 ◽  
pp. 1-15
Author(s):  
Julia Caon Araujo ◽  
Kita Chaves Damasio Macario ◽  
Vinícius Nunes Moreira ◽  
Anderson dos Santos Passos ◽  
Perla Baptista de Jesus ◽  
...  

ABSTRACT The vermetidae fossils of Petaloconchus varians, formed by calcium carbonate, associated with their radiocarbon ages, are the most accurate indicators of paleo sea level due to their restricted occupation in the intertidal zone in the rocky shore. However, the recrystallization of minerals can affect these age calculations and, consequently, the interpretation of the data. The aim of this study is to present new indicators of paleo sea-level changes in Southeast Brazil for the last 6000 years contributing to fill the data gap for the late Holocene. The influence of the recrystallization process was successfully resolved using the CarDS protocol, enabling the separation of the original aragonite fraction by density, prior to radiocarbon dating. This avoids the rejuvenation of ages and ensures greater efficiency for data interpretation. Paleo sea-level indicators were able to show a progressive increase in sea level up to the transgressive maximum of 4.15 m in 3700 BP years, followed by a regression to the current zero. This regression seems to have in addition, here we reinforce the reliability of the use of fossil vermetids as indicators of sea-level fluctuations.


1996 ◽  
Vol 39 (3) ◽  
Author(s):  
S. C. Stiros

Coastal challenges ill West Crete ill the last 4000 years can be described as a series of 11 relatively small (25 cm on the average) land subsidences alternating with short (150-250 year long) relatively still stands of the sea level. At 1500 B.P. an up to 9 m episodic relative land uplift and tilting of this part of the island occurred, but since then no significant coastal changes have been identified. There is strong evidence that these Late Holocene coastal changes are not a product of fluctuations of sea level, but reflect palaeoseismic events. The sequence of the latter is at variance with models of seismic deformation deduced from a wide range of observations in different tectonic environments, including coastal uplifts near major trenches: according to these models, strain buildup and release through earthquakes is described as a cyclic and rather uniform process, the earthquake cycle. In this process, the permanent seismic deformation accumulates after each earthquake to produce geological features, while the long-term deformation rate is approximately equal to the short term one. Obviously this is not the case with West Crete. The unusual pattern of seismic deformation in this island has been observed in other cases as well, but its explanation is not easy. The juxtaposition of different earthquake cycles, variations in the source and rate of stress or internal deformation of the uplifted hanging wall of a thrust in the pre-seismic period are some possible explanations for this unusual pattern of earthquake cycle in Greece.


2006 ◽  
Vol 66 (2) ◽  
pp. 288-302 ◽  
Author(s):  
W. Roland Gehrels ◽  
Katie Szkornik ◽  
Jesper Bartholdy ◽  
Jason R. Kirby ◽  
Sarah L. Bradley ◽  
...  

AbstractCores and exposed cliff sections in salt marshes around Ho Bugt, a tidal embayment in the northernmost part of the Danish Wadden Sea, were subjected to 14C dating and litho- and biostratigraphical analyses to reconstruct paleoenvironmental changes and to establish a late Holocene relative sea-level history. Four stages in the late Holocene development of Ho Bugt can be identified: (1) groundwater-table rise and growth of basal peat (from at least 2300 BC to AD 0); (2) salt-marsh formation (0 to AD 250); (3) a freshening phase (AD 250 to AD 1600?), culminating in the drying out of the marshes and producing a distinct black horizon followed by an aeolian phase with sand deposition; and (4) renewed salt-marsh deposition (AD 1600? to present). From 16 calibrated AMS radiocarbon ages on fossil plant fragments and 4 calibrated conventional radiocarbon ages on peat, we reconstructed a local relative sea-level history that shows a steady sea-level rise of 4 m since 4000 cal yr BP. Contrary to suggestions made in the literature, the relative sea-level record of Ho Bugt does not contain a late Holocene highstand. Relative sea-level changes at Ho Bugt are controlled by glacio-isostatic subsidence and can be duplicated by a glacial isostatic adjustment model in which no water is added to the world's oceans after ca. 5000 cal yr BP.


Author(s):  
Daniel J. King ◽  
Rewi M. Newnham ◽  
W. Roland Gehrels ◽  
Kate J. Clark

2007 ◽  
Vol 242 (1-3) ◽  
pp. 27-38 ◽  
Author(s):  
Arto Miettinen ◽  
Henrik Jansson ◽  
Teija Alenius ◽  
Georg Haggrén

2020 ◽  
Author(s):  
Huixian Chen ◽  
Jianhua Wang ◽  
Nicole S. Khan ◽  
Jiaxue Wu ◽  
Benjamin P. Horton

<p>Proxy reconstructions of estuarine evolution provide perspectives on regional to global environmental changes, including relative sea-level changes, climatic changes, and agricultural developments. Although there are studies of the Holocene sedimentary processes in the Pearl River estuary, the understanding of early Holocene sedimentation in unknown due to limited preservation.</p><p>Here, we present a new record of lithological, benthic foraminiferal, and geochemical (δ<sup>13</sup>C and C/N) change from a sediment core in the west shoal of the modern Lingding Bay along a paleo-valley. The lithologic and foraminiferal record reveal the transgressive evolution from fluvial, inner estuary to middle estuary in the early Holocene between 11300 and 8100 cal a BP in response to rapid sea-level rise. δ<sup>13</sup>C and C/N data indicate high freshwater discharge from 10500 to 8100 cal a BP driven by a strong Asian monsoon. The middle Holocene (8100 - 3300 cal a BP) sediment is absent in this core and others in the northward of the Lingding Bay. Seismic profiles reveal a tidal ravinement surface across Lingding Bay, which contributed to subaqueous erosion on the mid-Holocene sedimentation hiatus, might be resulted from unique geomorphology of the Pearl River Delta. In the late Holocene (3300 cal a BP to the present), the lithology and foraminiferal assemblages suggest further regressive evolution from outer estuary, middle estuary channel, to middle estuary shoal due to deltaic progradation under stable relative sea levels. In the last 2000 years, δ<sup>13</sup>C and C/N values reveal the intensive development of agriculture coupled with the reduction of freshwater input derived from a weakening Asian monsoon. Our study illustrates the interaction of Asian monsoon and sea-level changes within the Pearl River estuary landform and their impact on Holocene sedimentary processes.</p>


Sign in / Sign up

Export Citation Format

Share Document