Holocene fire history reconstruction of a mid-elevation mixed-conifer forest in the Eastern Cascades, Washington (USA)

The Holocene ◽  
2021 ◽  
pp. 095968362098803
Author(s):  
Zoe A Rushton ◽  
Megan K Walsh

Fire histories of mid-elevation mixed-conifer forests are uncommon in the eastern Cascades, limiting our understanding of long-term fire dynamics in these environments. The purpose of this study was to reconstruct the fire and vegetation history for a moist mid-elevation mixed-conifer site, and to determine whether Holocene fire activity in this watershed was intermediate to fire regimes observed at higher and lower elevations in the eastern Cascades. Fire activity and vegetation change was reconstructed using macroscopic charcoal and pollen analysis of sediment core from Long Lake. This site is located ~45 km west of Yakima, WA, and exists in a grand fir-dominated, mixed-conifer forest. Results show low fire activity from ca. 9870 to 6000 cal yr BP, after which time fire increased and remained frequent until ca. 500 cal yr BP. A woodland environment existed at the site in the early Holocene, with the modern coniferous forest establishing ca. 6000–5500 cal yr BP. A mixed-severity fire regime has existed at the site for the past ~6000 years, with both higher- and lower-severity fire episodes occurring on average every ~80–100 years. However, only one fire episode occurred in the Long Lake watershed during the past 500 years, and none within the past ~150 years. Based on a comparison with other eastern Cascade sites, Holocene fire regimes at Long Lake, particularly during the late Holocene, appear to be intermediate between those observed at higher- and lower elevation sites, both in terms of fire severity and frequency.

2007 ◽  
Vol 37 (2) ◽  
pp. 318-330 ◽  
Author(s):  
Rand R. Evett ◽  
Ernesto Franco-Vizcaino ◽  
Scott L. Stephens

Fire histories of Jeffrey pine ( Pinus jeffreyi Grev. & Balf.) – mixed conifer forests in the Sierra San Pedro Mártir, Baja California, Mexico, recently described through analysis of 300 years of tree-ring fire-scars, indicate there have been four distinct fire-regime periods based on fire frequency and size. We used modern lightning and fire data to assess whether the current lightning regime could have supported the prehistoric fire regime. Although there are several sources of uncertainty, the present lightning regime, concentrated in the summer with little spring activity, may be insufficient to support the high number and spring seasonality of fires recorded during some periods in the past. Changes in the ignition regime recorded during the past 300 years could have been due to anthropogenic and (or) climatic factors; available evidence suggests periods of frequent fire were dominated by anthropogenic ignitions.


2014 ◽  
Vol 23 (7) ◽  
pp. 959 ◽  
Author(s):  
Larissa L. Yocom ◽  
Peter Z. Fulé ◽  
Donald A. Falk ◽  
Celia García-Domínguez ◽  
Eladio Cornejo-Oviedo ◽  
...  

We investigated the influence of broad- v. fine-scale factors on fire in an unusual landscape suitable for distinguishing the drivers of fire synchrony. Our study was conducted in the Sierra Madre Oriental mountain range, in north-eastern Mexico. We worked in nine sites on three parallel mountains that receive nearly identical broad-scale climatic influence, but between which fires are unlikely to spread. We collected and cross dated samples from 357 fire-scarred trees in nine sites in high-elevation mixed-conifer forests and identified fire dates. We used Jaccard similarity analysis to evaluate synchrony among sites and quantified relationships between climate and fire occurrence. Fires were historically frequent (mean fire interval ranged from 8 to 16 years in all sites) and dates of fire exclusion ranged from 1887 to 1962. We found low fire synchrony among the three mountains, indicating a strong influence of fine-scale factors on fire occurrence. Fire regime attributes were similar across mountains despite the independence of fire dates. La Niña events were associated with fire over time, although not significantly since the 1830s. Our results highlight the importance of scale in describing fire regimes and suggest that we can use fire history to understand controls on complex ecosystem processes and patterns.


Ecology ◽  
1979 ◽  
Vol 60 (1) ◽  
pp. 129-142 ◽  
Author(s):  
Bruce M. Kilgore ◽  
Dan Taylor

2012 ◽  
Vol 42 (8) ◽  
pp. 1505-1517 ◽  
Author(s):  
Andrew J. Larson ◽  
Kyle C. Stover ◽  
Christopher R. Keyes

Spatial pattern is an essential attribute of forest ecosystems and influences many ecological processes and functions. We hypothesized that restoration thinning conducted in fire-excluded ponderosa pine ( Pinus ponderosa Douglas ex P. Lawson & C. Lawson) – western larch ( Larix occidentalis Nutt.) – mixed-conifer forest would restore spatial patterns characteristic of active fire regime old-growth. We evaluated effects of thinning on spatial patterns and also compared post-treatment patterns with reconstructions of pre-suppression patterns at nearby old-growth reference sites that developed in the historical mixed-severity fire regime. Restoration thinning reduced spatial aggregation and resulted in globally random tree patterns comprised of local tree clumps, openings, and widely spaced single trees, similar to reference conditions. Post-treatment spatial patterns in the replicate treatment units spanned the range of variability bounded by the reference sites. Our analyses indicate that, under certain circumstances, restoration of spatial heterogeneity in unlogged, fire-excluded forests can be achieved by retaining live legacy pre-suppression trees during thinning treatments. However, success is not assured. Restoration of spatial heterogeneity in forests where few live pre-suppression trees remain due to past mortality or harvest, a common condition of candidate restoration sites, presents a greater silvicultural challenge. Thus, we recommend that, as a general rule, managers deliberately address spatial pattern when crafting forest restoration treatment objectives and prescriptions.


2017 ◽  
Vol 122 (9) ◽  
pp. 2338-2355 ◽  
Author(s):  
Bernardo Maestrini ◽  
Erin C. Alvey ◽  
Matthew D. Hurteau ◽  
Hugh Safford ◽  
Jessica R. Miesel

2007 ◽  
Vol 37 (2) ◽  
pp. 306-317 ◽  
Author(s):  
Rand R. Evett ◽  
Ernesto Franco-Vizcaino ◽  
Scott L. Stephens

Phytolith analysis was applied to several sites in a Jeffrey pine ( Pinus jeffreyi Grev. & Balf.) – mixed conifer forest in the Sierra San Pedro Mártir, Baja California, Mexico, to explore the hypothesis that the introduction of livestock in the late 18th century led to overgrazing of a prehistoric grass understory, resulting in changes to the prehistoric fire regime observed in the tree-ring fire-scar record. Stable soils in regions with extensive prehistoric grass cover retain a high concentration of total phytoliths and high percentage of grass phytoliths, regardless of historic vegetation changes. Phytoliths extracted from soil samples collected from several sites in the Sierra San Pedro Mártir revealed total phytolith concentrations in forest soils were generally <0.5% by mass, with most <0.1%, whereas grass phytoliths were generally <10% of the total, values consistent with the interpretation of a forest with sparse grass cover in the understory. Phytolith evidence suggests that there was minimal grass available for grazing in prehistoric Sierra San Pedro Mártir forests; overgrazing a grass understory was probably not a major driver of changes in the prehistoric fire regime.


Sign in / Sign up

Export Citation Format

Share Document