Modern pollen–climate relationships and their application for pollen-based quantitative climate reconstruction of the mid-Holocene on the southern Korean Peninsula

The Holocene ◽  
2021 ◽  
pp. 095968362110604
Author(s):  
Jaeyoung Lee ◽  
Chang-Pyo Jun ◽  
Sangheon Yi ◽  
Yongmi Kim ◽  
Eunmi Lee ◽  
...  

A modern pollen dataset is a prerequisite for reconstructing quantitative paleoclimate and paleovegetation cover using fossil pollen records. Although multiple modern pollen–climate datasets have been established covering a wide range of climate conditions, such datasets are exceedingly rare for the Korean Peninsula (KP). In this study, we acquired a modern pollen dataset from 198 surface soil samples collected on 37 mountains on the southern KP. Redundancy analysis (RDA) and variation partitioning results identified mean annual temperature (Tann) as the most important climate variable shaping pollen assemblages on the southern KP. Using the pollen–climate relationships inferred from the RDA, we applied the Huisman–Olff–Fresco model and determined that arboreal pollen taxa responded sensitively to the climatic gradient, whereas non-arboreal pollen taxa did not. We applied weighted averaging–partial least squares (WA-PLS) and the modern analog technique (MAT) to the pollen dataset, and a comparison of the results showed that MAT performed better than WA-PLS. A transfer function was applied to fossil pollen records from the areas covered by our dataset; the results confirmed that annual precipitation (Pann) and Tann were modulated by different mechanisms, with Pann strongly affected by El Niño–Southern Oscillation-driven typhoons during the Holocene, whereas Tann was mainly influenced by the Tsushima Warm Current from 7500 to 5100 cal yr BP depending on Kuroshio Current inflow intensity, and subsequently followed by the East Asian winter monsoon during 5100–3400 cal yr BP.

2000 ◽  
Vol 54 (1) ◽  
pp. 132-143 ◽  
Author(s):  
Mark B. Bush

Modern pollen samples collected from 80 locations and representing a wide array of mature habitats in Panama and Costa Rica provide analogs to assist in the interpretation of fossil pollen records. Pollen spectra accurately reflect changes in actual forest types. Upslope transport of pollen of anemophilous species is evident in the sparsely vegetated montane samples. However, the corresponding downslope transport of these prolific pollen producers is masked by local pollen production. Mean pollen representation across gradients of mean annual temperature (MAT; 4°C increments) and mean annual precipitation (MAP; 500 mm increments) for 17 pollen types are presented as response matrices. Although preliminary in nature, these response matrices present a clearer image of pollen representation than can be obtained by considering gradients of MAT or MAP alone.


2021 ◽  
Vol 61 (1) ◽  
pp. 1-19
Author(s):  
Md. Firoze Quamar ◽  
Pooja Tiwari ◽  
Biswajeet Thakur

An understanding of the relationship between modern pollen and vegetation is a prerequisite for reconstruction of vegetation and climate change from fossil pollen records. We conducted palynological studies of thirty-five surface soil samples from the Jammu region of India, which revealed that Pinus, among the conifers (regional needle-leaved taxa), is over-represented in the pollen assemblage due to its high production and effective dispersal of pollen. Other coniferous and broadleaved (regional and/or extra-regional) taxa have comparatively lower values in the pollen assemblages, similar to the representation of subtropical deciduous forest elements (regional), as well as shrubby (regional and/or extra-regional) taxa. This inconsistency in the pollen assemblage could be due to long-distance transport of the former by wind and/or water from the higher reaches of the Himalayas, and also because the latter have an entomogamous pollination syndrome and are not high pollen producers. The recovered pollen assemblage presents a distorted picture of the extant vegetation; hence, caution should be exercised in interpreting fossil pollen records from the study area. Principal component analysis (PCA) shows variability in the distribution of pollen from different sites in the Jammu region, perhaps the result of transport (by wind and/ or water), altitude and/or edaphic factors of the Himalayan terrain. The study should improve our understanding of the modern pollen-vegetation relationship and aid further calibration and interpretation of fossil pollen records.


2007 ◽  
Vol 362 (1478) ◽  
pp. 309-319 ◽  
Author(s):  
L Gillson ◽  
K.I Duffin

In the Kruger National Park (KNP), South Africa, ecosystem managers use a series of monitoring endpoints, known as thresholds of potential concern (TPCs), to define the upper and the lower levels of accepted variation in ecosystems. For woody vegetation, the current TPC suggests that woody cover should not drop by more than 80% of its ‘highest ever’ value. In this paper, we explore the utility of palaeoecological data in informing TPCs. We use calibrated fossil pollen data to explore variability in vegetation at two sites over the past 5000 years, to provide a long-term record of changes in woody vegetation cover and a context for interpreting more recent vegetation change. The fossil pollen data are calibrated using studies of modern pollen and vegetation from KNP; arboreal pollen percentage was simulated using pollen–landscape modelling software for savannah landscapes of varying woody vegetation cover, and the relationship between vegetation and pollen data was quantified using nonlinear regression. This quadratic equation was then applied to fossil pollen data in order to estimate woody vegetation cover from arboreal pollen percentages. Our results suggest that the TPCs have not been exceeded during the period represented in the pollen record, because estimated woody vegetation cover has remained above 20% of its highest ever value. By comparing the fossil pollen data with TPCs, our study demonstrates how palaeoecological data can be presented in a form that is directly relevant to management objectives.


2019 ◽  
Vol 12 (5) ◽  
pp. 907-916
Author(s):  
Yumei Li ◽  
Yun Zhang ◽  
Zhaochen Kong ◽  
Long Zhao ◽  
Li Wang ◽  
...  

Abstract Aims Climate change can significantly affect the vegetation worldwide. Thus, paleovegetation and paleoclimate reconstruction should consider the quantitative relationship between modern vegetation and climate. The specific objectives of this study were (i) to assess the influence of environmental variables on pollen assemblages in the Kanas region, (ii) to reconstruct the evolution of vegetation over the past 3000 years using pollen records and (iii) to quantify historical climate change (including mean annual temperature and total annual precipitation) using a weighted averaging partial least squares regression method (WAPLS) applied to fossil pollen data from the Kanas wetland in Xinjiang, China. Methods A total of 65 surface and 50 fossil samples were collected from the Kanas wetland and analysed for 14C, pollen and grain size. By combining these data with those obtained from 214 samples of surface pollen assemblages in north Xinjiang, the late Holocene climate was reconstructed using a WAPLS model. Important Findings The vegetation in Kanas was dominated by forest for the past 3000 years, undergoing an arbour-vegetation transition from predominantly pine to spruce over that period. The WAPLS model showed that the paleoclimate progressed from cold-wet to warm-dry and subsequently back to cold-wet. Prior to 1350 calibrated years before the present (cal. yr BP), the climate of Kanas was cold and wet, and conditions became increasingly warm and dry until 870 cal. yr BP. The temperature reconstruction model indicated that a ‘Little Ice Age’ occurred ~380 cal. yr BP. These data will help us improve the understanding of abrupt climate change and provide important information regarding the prediction of climate.


Grana ◽  
2018 ◽  
Vol 57 (5) ◽  
pp. 364-376 ◽  
Author(s):  
Mohammad Firoze Quamar ◽  
Sheikh Nawaz Ali ◽  
Sundeep Kumar Pandita ◽  
Yudhbir Singh

2011 ◽  
Vol 164 (3-4) ◽  
pp. 223-237 ◽  
Author(s):  
Huw T. Jones ◽  
Francis E. Mayle ◽  
R. Toby Pennington ◽  
Timothy J. Killeen

2021 ◽  
Vol 11 (4) ◽  
pp. 1431
Author(s):  
Sungsik Wang ◽  
Tae Heung Lim ◽  
Kyoungsoo Oh ◽  
Chulhun Seo ◽  
Hosung Choo

This article proposes a method for the prediction of wide range two-dimensional refractivity for synthetic aperture radar (SAR) applications, using an inverse distance weighted (IDW) interpolation of high-altitude radio refractivity data from multiple meteorological observatories. The radio refractivity is extracted from an atmospheric data set of twenty meteorological observatories around the Korean Peninsula along a given altitude. Then, from the sparse refractive data, the two-dimensional regional radio refractivity of the entire Korean Peninsula is derived using the IDW interpolation, in consideration of the curvature of the Earth. The refractivities of the four seasons in 2019 are derived at the locations of seven meteorological observatories within the Korean Peninsula, using the refractivity data from the other nineteen observatories. The atmospheric refractivities on 15 February 2019 are then evaluated across the entire Korean Peninsula, using the atmospheric data collected from the twenty meteorological observatories. We found that the proposed IDW interpolation has the lowest average, the lowest average root-mean-square error (RMSE) of ∇M (gradient of M), and more continuous results than other methods. To compare the resulting IDW refractivity interpolation for airborne SAR applications, all the propagation path losses across Pohang and Heuksando are obtained using the standard atmospheric condition of ∇M = 118 and the observation-based interpolated atmospheric conditions on 15 February 2019. On the terrain surface ranging from 90 km to 190 km, the average path losses in the standard and derived conditions are 179.7 dB and 182.1 dB, respectively. Finally, based on the air-to-ground scenario in the SAR application, two-dimensional illuminated field intensities on the terrain surface are illustrated.


Ecosystems ◽  
2021 ◽  
Author(s):  
Robert O’Dwyer ◽  
Laurent Marquer ◽  
Anna-Kari Trondman ◽  
Anna Maria Jönsson

AbstractClimate change and human activities influence the development of ecosystems, with human demand of ecosystem services altering both land use and land cover. Fossil pollen records provide time series of vegetation characteristics, and the aim of this study was to create spatially continuous reconstructions of land cover through the Holocene in southern Sweden. The Landscape Reconstruction Algorithm (LRA) was applied to obtain quantitative reconstructions of pollen-based vegetation cover at local scales, accounting for pollen production, dispersal, and deposition mechanisms. Pollen-based local vegetation estimates were produced from 41 fossil pollen records available for the region. A comparison of 17 interpolation methods was made and evaluated by comparing with current land cover. Simple kriging with cokriging using elevation was selected to interpolate the local characteristics of past land cover, to generate more detailed reconstructions of trends and degree of variability in time and space than previous studies based on pollen data representing the regional scale. Since the Mesolithic, two main processes have acted to reshape the land cover of southern Sweden, originally mostly covered by broad-leaved forests. The natural distribution limit of coniferous forest has moved southward during periods with colder climate and retracted northward during warmer periods, and human expansion in the area and agrotechnological developments has led to a gradually more open landscape, reaching maximum openness at the beginning of the 20th century. The recent intensification of agriculture has led to abandonment of less fertile agricultural fields and afforestation with conifer forest.


Sign in / Sign up

Export Citation Format

Share Document