Using near infrared spectroscopy to assess the composition of New Zealand aquaculture species

NIR news ◽  
2018 ◽  
Vol 29 (5) ◽  
pp. 12-14
Author(s):  
Matthew R Miller ◽  
Jonathan Puddick ◽  
Jane E Symonds ◽  
Seumas P Walker ◽  
Hong (Sabrina) Tian

Near infrared spectroscopy has been employed to determine the proximate composition of Chinook salmon ( Oncorhynchus tshawytscha) and Greenshell Mussels™ ( Perna canaliculus). This work was presented at the Australian Near Infrared Spectroscopy Group and New Zealand Near Infrared Spectroscopy Society meeting in Rotorua, 11–12 April 2018, where it won the best overall presentation award for Near Infrared Science (Figure 1).

2007 ◽  
Vol 55 (8) ◽  
pp. 2791-2796 ◽  
Author(s):  
Lucy P. Meagher ◽  
Stephen E. Holroyd ◽  
David Illingworth ◽  
Frank van de Ven ◽  
Susan Lane

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8619
Author(s):  
Isadora Kaline Camelo Pires de Oliveira Galdino ◽  
Hévila Oliveira Salles ◽  
Karina Maria Olbrich dos Santos ◽  
Germano Veras ◽  
Flávia Carolina Alonso Buriti

Background In Brazil, over the last few years there has been an increase in the production and consumption of goat cheeses. In addition, there was also a demand to create options to use the whey extracted during the production of cheeses. Whey can be used as an ingredient in the development of many products. Therefore, knowing its composition is a matter of utmost importance, considering that the reference methods of food analysis require time, trained labor and expensive reagents for its execution. Methods Goat whey samples produced in winter and summer were submitted to proximate composition analysis (moisture, total solids, ashes, proteins, fat and carbohydrates by difference) using reference methods and near infrared spectroscopy (NIRS). The spectral data was preprocessed by baseline correction and the Savitzky–Golay derivative. The models were built using Partial Least Square Regression (PLSR) with raw and preprocessed data for each dependent variable (proximate composition parameter). Results The average whey composition values obtained using the referenced methods were in accordance with the consulted literature. The composition did not differ significantly (p > 0.05) between the summer and winter whey samples. The PLSR models were made available using the following figures of merit: coefficients of determination of the calibration and prediction models (R2cal and R2pred, respectively) and the Root Mean Squared Error Calibration and Prediction (RMSEC and RMSEP, respectively). The best models used raw data for fat and protein determinations and the values obtained by NIRS for both parameters were consistent with their referenced methods. Consequently, NIRS can be used to determine fat and protein in goat whey.


CHEST Journal ◽  
2003 ◽  
Vol 124 (4) ◽  
pp. 179S
Author(s):  
Naglaa H. El-Abbadi ◽  
Reza Mina-Araghi ◽  
Jangwoen Lee ◽  
Nevine Mikhail-Hanna ◽  
Albert Cerussi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document