Group sequential designs with robust semiparametric recurrent event models

2018 ◽  
Vol 28 (8) ◽  
pp. 2385-2403 ◽  
Author(s):  
Tobias Mütze ◽  
Ekkehard Glimm ◽  
Heinz Schmidli ◽  
Tim Friede

Robust semiparametric models for recurrent events have received increasing attention in the analysis of clinical trials in a variety of diseases including chronic heart failure. In comparison to parametric recurrent event models, robust semiparametric models are more flexible in that neither the baseline event rate nor the process inducing between-patient heterogeneity needs to be specified in terms of a specific parametric statistical model. However, implementing group sequential designs in the robust semiparametric model is complicated by the fact that the sequence of Wald statistics does not follow asymptotically the canonical joint distribution. In this manuscript, we propose two types of group sequential procedures for a robust semiparametric analysis of recurrent events. The first group sequential procedure is based on the asymptotic covariance of the sequence of Wald statistics and it guarantees asymptotic control of the type I error rate. The second procedure is based on the canonical joint distribution and does not guarantee asymptotic type I error rate control but is easy to implement and corresponds to the well-known standard approach for group sequential designs. Moreover, we describe how to determine the maximum information when planning a clinical trial with a group sequential design and a robust semiparametric analysis of recurrent events. We contrast the operating characteristics of the proposed group sequential procedures in a simulation study motivated by the ongoing phase 3 PARAGON-HF trial (ClinicalTrials.gov identifier: NCT01920711) in more than 4600 patients with chronic heart failure and a preserved ejection fraction. We found that both group sequential procedures have similar operating characteristics and that for some practically relevant scenarios, the group sequential procedure based on the canonical joint distribution has advantages with respect to the control of the type I error rate. The proposed method for calculating the maximum information results in appropriately powered trials for both procedures.

2020 ◽  
Author(s):  
Pauline Manchon ◽  
Drifa Belhadi ◽  
France Mentré ◽  
Cédric Laouénan

Abstract Background Viral haemorrhagic fevers are characterized by irregular outbreaks with high mortality rate. Difficulties arise when implementing therapeutic trials in this context. The outbreak duration is hard to predict and can be short compared to delays of trial launch and number of subject needed (NSN) recruitment. Our objectives were to compare, using clinical trial simulation, different trial designs for experimental treatment evaluation in various outbreak scenarios. Methods Four type of designs were compared: fixed or group-sequential, each being single- or two-arm. The primary outcome was 14-day survival rate. For single-arm designs, results were compared to a pre-trial historical survival rate pH. Treatments efficacy was evaluated by one-sided tests of proportion (fixed designs) and Whitehead triangular tests (group-sequential designs) with type-I-error = 0.025. Both survival rates in the control arm pC and survival rate differences Δ (including 0) varied. Three specific cases were considered: “standard” (fixed pC, reaching NSN for fixed designs and maximum sample size NMax for group-sequential designs); “changing with time” (increased pC\(\text{ }\)over time); “stopping of recruitment” (epidemic ends). We calculated the proportion of simulated trials showing treatment efficacy, with K = 93,639 simulated trials to get a type-I-error PI95% of [0.024;0.026]. Results Under H0 (Δ = 0), for the “standard” case, the type-I-error was maintained regardless of trial designs. For “changing with time” case, when pC>pH, type-I-error was inflated, and when pC<pH it decreased. Wrong conclusions were more often observed for single-arm designs due to an increase of Δ over time. Under H1 (Δ=+0.2), for the “standard” case, the power was similar between single- and two-arm designs when pC=pH. For “stopping of recruitment” case, single-arm performed better than two-arm designs, and fixed designs reported higher power than group-sequential designs. A web R-Shiny application was developed. Conclusions At an outbreak beginning, group-sequential two-arm trials should be preferred, as the infected cases number increases allowing to conduct a strong randomized control trial. Group-sequential designs allow early termination of trials in cases of harmful experimental treatment. After the epidemic peak, fixed single-arm design should be preferred, as the cases number decreases but this assumes a high level of confidence on the pre-trial historical survival rate.


2021 ◽  
Author(s):  
Daniel Lakens ◽  
Friedrich Pahlke ◽  
Gernot Wassmer

This tutorial illustrates how to design, analyze, and report group sequential designs. In these designs, groups of observations are collected and repeatedly analyzed, while controlling error rates. Compared to a fixed sample size design, where data is analyzed only once, group sequential designs offer the possibility to stop the study at interim looks at the data either for efficacy or futility. Hence, they provide greater flexibility and are more efficient in the sense that due to early stopping the expected sample size is smaller as compared to the sample size in the design with no interim look. In this tutorial we illustrate how to use the R package 'rpact' and the associated Shiny app to design studies that control the Type I error rate when repeatedly analyzing data, even when neither the number of looks at the data, nor the exact timing of looks at the data, is specified. Specifically for *t*-tests, we illustrate how to perform an a-priori power analysis for group sequential designs, and explain how to stop the data collection for futility by rejecting the presence of an effect of interest based on a beta-spending function. Finally, we discuss how to report adjusted effect size estimates and confidence intervals. The recent availability of accessible software such as 'rpact' makes it possible for psychologists to benefit from the efficiency gains provided by group sequential designs.


Biometrics ◽  
1992 ◽  
Vol 48 (4) ◽  
pp. 1131 ◽  
Author(s):  
Michael A. Proschan ◽  
Dean A. Follmann ◽  
Myron A. Waclawiw

2014 ◽  
Vol 53 (05) ◽  
pp. 343-343

We have to report marginal changes in the empirical type I error rates for the cut-offs 2/3 and 4/7 of Table 4, Table 5 and Table 6 of the paper “Influence of Selection Bias on the Test Decision – A Simulation Study” by M. Tamm, E. Cramer, L. N. Kennes, N. Heussen (Methods Inf Med 2012; 51: 138 –143). In a small number of cases the kind of representation of numeric values in SAS has resulted in wrong categorization due to a numeric representation error of differences. We corrected the simulation by using the round function of SAS in the calculation process with the same seeds as before. For Table 4 the value for the cut-off 2/3 changes from 0.180323 to 0.153494. For Table 5 the value for the cut-off 4/7 changes from 0.144729 to 0.139626 and the value for the cut-off 2/3 changes from 0.114885 to 0.101773. For Table 6 the value for the cut-off 4/7 changes from 0.125528 to 0.122144 and the value for the cut-off 2/3 changes from 0.099488 to 0.090828. The sentence on p. 141 “E.g. for block size 4 and q = 2/3 the type I error rate is 18% (Table 4).” has to be replaced by “E.g. for block size 4 and q = 2/3 the type I error rate is 15.3% (Table 4).”. There were only minor changes smaller than 0.03. These changes do not affect the interpretation of the results or our recommendations.


2003 ◽  
Vol 22 (5) ◽  
pp. 665-675 ◽  
Author(s):  
Weichung J. Shih ◽  
Peter Ouyang ◽  
Hui Quan ◽  
Yong Lin ◽  
Bart Michiels ◽  
...  

2021 ◽  
pp. 174077452110101
Author(s):  
Jennifer Proper ◽  
John Connett ◽  
Thomas Murray

Background: Bayesian response-adaptive designs, which data adaptively alter the allocation ratio in favor of the better performing treatment, are often criticized for engendering a non-trivial probability of a subject imbalance in favor of the inferior treatment, inflating type I error rate, and increasing sample size requirements. The implementation of these designs using the Thompson sampling methods has generally assumed a simple beta-binomial probability model in the literature; however, the effect of these choices on the resulting design operating characteristics relative to other reasonable alternatives has not been fully examined. Motivated by the Advanced R2 Eperfusion STrategies for Refractory Cardiac Arrest trial, we posit that a logistic probability model coupled with an urn or permuted block randomization method will alleviate some of the practical limitations engendered by the conventional implementation of a two-arm Bayesian response-adaptive design with binary outcomes. In this article, we discuss up to what extent this solution works and when it does not. Methods: A computer simulation study was performed to evaluate the relative merits of a Bayesian response-adaptive design for the Advanced R2 Eperfusion STrategies for Refractory Cardiac Arrest trial using the Thompson sampling methods based on a logistic regression probability model coupled with either an urn or permuted block randomization method that limits deviations from the evolving target allocation ratio. The different implementations of the response-adaptive design were evaluated for type I error rate control across various null response rates and power, among other performance metrics. Results: The logistic regression probability model engenders smaller average sample sizes with similar power, better control over type I error rate, and more favorable treatment arm sample size distributions than the conventional beta-binomial probability model, and designs using the alternative randomization methods have a negligible chance of a sample size imbalance in the wrong direction. Conclusion: Pairing the logistic regression probability model with either of the alternative randomization methods results in a much improved response-adaptive design in regard to important operating characteristics, including type I error rate control and the risk of a sample size imbalance in favor of the inferior treatment.


1977 ◽  
Vol 2 (3) ◽  
pp. 187-206 ◽  
Author(s):  
Charles G. Martin ◽  
Paul A. Games

This paper presents an exposition and an empirical comparison of two potentially useful tests for homogeneity of variance. Control of Type I error rate, P(EI), and power are investigated for three forms of the Box test and for two forms of the jackknife test with equal and unequal n's under conditions of normality and nonnormality. The Box test is shown to be robust to violations of the assumption of normality. The jackknife test is shown not to be robust. When n's are unequal, the problem of heterogeneous within-cell variances of the transformed values and unequal n's affects the jackknife and Box tests. Previously reported suggestions for selecting subsample sizes for the Box test are shown to be inappropriate, producing an inflated P(EI). Two procedures which alleviate this problem are presented for the Box test. Use of the jack-knife test with a reduced alpha is shown to provide power and control of P(EI) at approximately the same level as the Box test. Recommendations for the use of these techniques and computational examples of each are provided.


Sign in / Sign up

Export Citation Format

Share Document