scholarly journals Fallopian tube anatomy predicts pregnancy and pregnancy outcomes after tubal reversal surgery

2021 ◽  
pp. 096228022110235
Author(s):  
Rafael S de Souza ◽  
Gary S Berger

We conducted this study to determine whether fallopian tube anatomy can predict the likelihood of pregnancy and pregnancy outcomes after tubal sterilization reversal. We built a flexible, non-parametric, multivariate model via generalized additive models to assess the effects of the following tubal parameters observed during tubal reparative surgery: tubal lengths; differences in tubal segment location and diameters at the anastomosis sites; and fibrosis of the tubal muscularis. In this study, population, age, and tubal length—in that order—were the primary factors predicting the likelihood of pregnancy. For pregnancy outcomes, tubal length was the most influential predictor of birth and ectopic pregnancy, while age was the primary predictor of miscarriage. Segment location and diameters contributed slightly to the odds of miscarriage and ectopic pregnancy. Tubal muscularis fibrosis had little apparent effect. This study is the first to show that a statistical learning predictive model based on fallopian tube anatomy can predict pregnancy and pregnancy outcome probabilities after tubal reversal surgery.

2019 ◽  
Author(s):  
Rafael S. de Souza ◽  
Gary S. Berger

ABSTRACTWe conducted this study to determine if postoperative fallopian tube anatomy can predict the likelihood of pregnancy and pregnancy outcomes after tubal sterilisation reversal.We built a flexible, non-parametric, multivariate model via generalised additive models to assess the effects of these tubal parameters observed during tubal reparative surgery: tubal lengths; differences in tubal segment location and diameters at the anastomosis sites; and, fibrosis of the tubal muscularis.Age and tubal length (in that order) are the primary features determining the likelihood of pregnancy. For pregnancy outcomes, age is the primary predictor of miscarriage, but tubal length is the most influential predictor of the odds of birth and ectopic pregnancy. Segment location and diameters contribute slightly to the odds of miscarriage and ectopic pregnancy, whereas fibrosis has little apparent effect.This study is the first to show that a statistical learning predictive model based on fallopian tube anatomy can predict both pregnancy and pregnancy outcome probabilities after tubal reversal surgery.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lei Nian ◽  
De-Hong Yang ◽  
Jie Zhang ◽  
Han Zhao ◽  
Cai-Fen Zhu ◽  
...  

Objective: This study aims to investigate the clinical efficacy of laparoscopy and hysteroscopy in the treatment of tubal-factor infertility (TFI) to provide a basis for predicting postoperative pregnancy rates.Methods: The clinical data of 336 patients who underwent laparoscopy and hysteroscopy for TFI between February 2018 and December 2018 in the Department of Reproductive Gynecology at the First People's Hospital of Yunnan were retrospectively analyzed. After implementing the inclusion and exclusion criteria, 278 patients were included in the study. The patients were grouped according to pelvic adhesions, hydrosalpinx, twisted fallopian tubes, and fimbriae structure. The impact of the extent of fallopian tube diseases on postoperative pregnancy outcomes was analyzed.Results: Of the 278 patients, 129 got pregnant (pregnancy rate = 46.4%). Pelvic adhesions, hydrosalpinx, twisted/folded fallopian tubes, and damage to the fimbriae of the fallopian tubes were found to affect the natural pregnancy rate after surgery, and it decreased significantly with the aggravation of the disease (P < 0.001). Of the 129 patients who had natural pregnancies, 29 had ectopic pregnancies (ectopic pregnancy rate = 22.48%). Twisted/folded fallopian tubes and damage to the fimbriae structure significantly increased the incidence of postoperative ectopic pregnancy (P < 0.001).Conclusion: Laparoscopy and hysteroscopy are effective treatments for TFI. Pelvic adhesions, twisted/folded fallopian tubes, hydrosalpinx, and damage to the fimbriae of the fallopian tubes can affect postoperative pregnancy outcomes and lead to failure of a natural pregnancy after the operation. The incidence of ectopic pregnancy increases with the degree of fallopian tube twisting/folding and the degree of damage to the fimbriae of the fallopian tubes.


Author(s):  
V.N. Demidov, N.V. Mashinets

Two rare observations of disturbed ectopic pregnancy in isthmic part of the fallopian tube for a 5 weeks of gestation are presented. Clinical and echographic signs of this pathology are considered.


Author(s):  
François Freddy Ateba ◽  
Manuel Febrero-Bande ◽  
Issaka Sagara ◽  
Nafomon Sogoba ◽  
Mahamoudou Touré ◽  
...  

Mali aims to reach the pre-elimination stage of malaria by the next decade. This study used functional regression models to predict the incidence of malaria as a function of past meteorological patterns to better prevent and to act proactively against impending malaria outbreaks. All data were collected over a five-year period (2012–2017) from 1400 persons who sought treatment at Dangassa’s community health center. Rainfall, temperature, humidity, and wind speed variables were collected. Functional Generalized Spectral Additive Model (FGSAM), Functional Generalized Linear Model (FGLM), and Functional Generalized Kernel Additive Model (FGKAM) were used to predict malaria incidence as a function of the pattern of meteorological indicators over a continuum of the 18 weeks preceding the week of interest. Their respective outcomes were compared in terms of predictive abilities. The results showed that (1) the highest malaria incidence rate occurred in the village 10 to 12 weeks after we observed a pattern of air humidity levels >65%, combined with two or more consecutive rain episodes and a mean wind speed <1.8 m/s; (2) among the three models, the FGLM obtained the best results in terms of prediction; and (3) FGSAM was shown to be a good compromise between FGLM and FGKAM in terms of flexibility and simplicity. The models showed that some meteorological conditions may provide a basis for detection of future outbreaks of malaria. The models developed in this paper are useful for implementing preventive strategies using past meteorological and past malaria incidence.


Author(s):  
Mark David Walker ◽  
Mihály Sulyok

Abstract Background Restrictions on social interaction and movement were implemented by the German government in March 2020 to reduce the transmission of coronavirus disease 2019 (COVID-19). Apple's “Mobility Trends” (AMT) data details levels of community mobility; it is a novel resource of potential use to epidemiologists. Objective The aim of the study is to use AMT data to examine the relationship between mobility and COVID-19 case occurrence for Germany. Is a change in mobility apparent following COVID-19 and the implementation of social restrictions? Is there a relationship between mobility and COVID-19 occurrence in Germany? Methods AMT data illustrates mobility levels throughout the epidemic, allowing the relationship between mobility and disease to be examined. Generalized additive models (GAMs) were established for Germany, with mobility categories, and date, as explanatory variables, and case numbers as response. Results Clear reductions in mobility occurred following the implementation of movement restrictions. There was a negative correlation between mobility and confirmed case numbers. GAM using all three categories of mobility data accounted for case occurrence as well and was favorable (AIC or Akaike Information Criterion: 2504) to models using categories separately (AIC with “driving,” 2511. “transit,” 2513. “walking,” 2508). Conclusion These results suggest an association between mobility and case occurrence. Further examination of the relationship between movement restrictions and COVID-19 transmission may be pertinent. The study shows how new sources of online data can be used to investigate problems in epidemiology.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Narayan Sharma ◽  
René Schwendimann ◽  
Olga Endrich ◽  
Dietmar Ausserhofer ◽  
Michael Simon

Abstract Background Understanding how comorbidity measures contribute to patient mortality is essential both to describe patient health status and to adjust for risks and potential confounding. The Charlson and Elixhauser comorbidity indices are well-established for risk adjustment and mortality prediction. Still, a different set of comorbidity weights might improve the prediction of in-hospital mortality. The present study, therefore, aimed to derive a set of new Swiss Elixhauser comorbidity weightings, to validate and compare them against those of the Charlson and Elixhauser-based van Walraven weights in an adult in-patient population-based cohort of general hospitals. Methods Retrospective analysis was conducted with routine data of 102 Swiss general hospitals (2012–2017) for 6.09 million inpatient cases. To derive the Swiss weightings for the Elixhauser comorbidity index, we randomly halved the inpatient data and validated the results of part 1 alongside the established weighting systems in part 2, to predict in-hospital mortality. Charlson and van Walraven weights were applied to Charlson and Elixhauser comorbidity indices. Derivation and validation of weightings were conducted with generalized additive models adjusted for age, gender and hospital types. Results Overall, the Elixhauser indices, c-statistic with Swiss weights (0.867, 95% CI, 0.865–0.868) and van Walraven’s weights (0.863, 95% CI, 0.862–0.864) had substantial advantage over Charlson’s weights (0.850, 95% CI, 0.849–0.851) and in the derivation and validation groups. The net reclassification improvement of new Swiss weights improved the predictive performance by 1.6% on the Elixhauser-van Walraven and 4.9% on the Charlson weights. Conclusions All weightings confirmed previous results with the national dataset. The new Swiss weightings model improved slightly the prediction of in-hospital mortality in Swiss hospitals. The newly derive weights support patient population-based analysis of in-hospital mortality and seek country or specific cohort-based weightings.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1252.2-1253
Author(s):  
R. Garofoli ◽  
M. Resche-Rigon ◽  
M. Dougados ◽  
D. Van der Heijde ◽  
C. Roux ◽  
...  

Background:Axial spondyloarthritis (axSpA) is a chronic rheumatic disease that encompasses various clinical presentations: inflammatory chronic back pain, peripheral manifestations and extra-articular manifestations. The current nomenclature divides axSpA in radiographic (in the presence of radiographic sacroiliitis) and non-radiographic (in the absence of radiographic sacroiliitis, with or without MRI sacroiliitis. Given that the functional burden of the disease appears to be greater in patients with radiographic forms, it seems crucial to be able to predict which patients will be more likely to develop structural damage over time. Predictive factors for radiographic progression in axSpA have been identified through use of traditional statistical models like logistic regression. However, these models present some limitations. In order to overcome these limitations and to improve the predictive performance, machine learning (ML) methods have been developed.Objectives:To compare ML models to traditional models to predict radiographic progression in patients with early axSpA.Methods:Study design: prospective French multicentric cohort study (DESIR cohort) with 5years of follow-up. Patients: all patients included in the cohort, i.e. 708 patients with inflammatory back pain for >3 months but <3 years, highly suggestive of axSpA. Data on the first 5 years of follow-up was used. Statistical analyses: radiographic progression was defined as progression either at the spine (increase of at least 1 point per 2 years of mSASSS scores) or at the sacroiliac joint (worsening of at least one grade of the mNY score between 2 visits). Traditional modelling: we first performed a bivariate analysis between our outcome (radiographic progression) and explanatory variables at baseline to select the variables to be included in our models and then built a logistic regression model (M1). Variable selection for traditional models was performed with 2 different methods: stepwise selection based on Akaike Information Criterion (stepAIC) method (M2), and the Least Absolute Shrinkage and Selection Operator (LASSO) method (M3). We also performed sensitivity analysis on all patients with manual backward method (M4) after multiple imputation of missing data. Machine learning modelling: using the “SuperLearner” package on R, we modelled radiographic progression with stepAIC, LASSO, random forest, Discrete Bayesian Additive Regression Trees Samplers (DBARTS), Generalized Additive Models (GAM), multivariate adaptive polynomial spline regression (polymars), Recursive Partitioning And Regression Trees (RPART) and Super Learner. Finally, the accuracy of traditional and ML models was compared based on their 10-foldcross-validated AUC (cv-AUC).Results:10-fold cv-AUC for traditional models were 0.79 and 0.78 for M2 and M3, respectively. The 3 best models in the ML algorithm were the GAM, the DBARTS and the Super Learner models, with 10-fold cv-AUC of: 0.77, 0.76 and 0.74, respectively (Table 1).Table 1.Comparison of 10-fold cross-validated AUC between best traditional and machine learning models.Best modelsCross-validated AUCTraditional models M2 (step AIC method)0.79 M3 (LASSO method)0.78Machine learning approach SL Discrete Bayesian Additive Regression Trees Samplers (DBARTS)0.76 SL Generalized Additive Models (GAM)0.77 Super Learner0.74AUC: Area Under the Curve; AIC: Akaike Information Criterion; LASSO: Least Absolute Shrinkage and Selection Operator; SL: SuperLearner. N = 295.Conclusion:Traditional models predicted better radiographic progression than ML models in this early axSpA population. Further ML algorithms image-based or with other artificial intelligence methods (e.g. deep learning) might perform better than traditional models in this setting.Acknowledgments:Thanks to the French National Society of Rheumatology and the DESIR cohort.Disclosure of Interests:Romain Garofoli: None declared, Matthieu resche-rigon: None declared, Maxime Dougados Grant/research support from: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Consultant of: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Speakers bureau: AbbVie, Eli Lilly, Merck, Novartis, Pfizer and UCB Pharma, Désirée van der Heijde Consultant of: AbbVie, Amgen, Astellas, AstraZeneca, BMS, Boehringer Ingelheim, Celgene, Cyxone, Daiichi, Eisai, Eli-Lilly, Galapagos, Gilead Sciences, Inc., Glaxo-Smith-Kline, Janssen, Merck, Novartis, Pfizer, Regeneron, Roche, Sanofi, Takeda, UCB Pharma; Director of Imaging Rheumatology BV, Christian Roux: None declared, Anna Moltó Grant/research support from: Pfizer, UCB, Consultant of: Abbvie, BMS, MSD, Novartis, Pfizer, UCB


Sign in / Sign up

Export Citation Format

Share Document