Fibre Orientation and Mechanical Properties of Short Glass Fibre Reinforced PP Composites

2005 ◽  
Vol 13 (3) ◽  
pp. 253-262 ◽  
Author(s):  
Minjie Chen ◽  
Chaoying Wan ◽  
Yong Zhang ◽  
Yinxi Zhang

The fibre orientation and distribution in short glass fibre (SGF) reinforced polypropylene (PP) composites were measured and an orientation function ( f) was introduced to describe the fibre orientation distribution. The fibre orientation distribution in the same level plane depended on the fibre position in an injection-moulded plate. The fibres close to the boundary wall of the injection cavity were parallel to the injection direction and those close to the back wall were perpendicular to the injection direction. A commercial maleic anhydride grafted PP (MAPP) was used as a compatibilizer. With the addition of MAPP, the fibre orientation distribution in PP/SGF/MAPP composites was slightly different from that of PP/SGF, but MAPP improved the interfacial adhesion between SGF and PP and consequently the mechanical properties. The use of SGF increased the tensile strength of the PP composites from 26.5 to 45.9 MPa (73% improvement), and for the PP/MAPP/SGF composite the tensile strength increased further to 55.4 MPa. The effect of SGF on the tensile strength can be expressed by a fibre efficiency factor (λσ). The SGF efficiency factor of PP/MAPP/SGF (0.198) was 45% higher than that of PP/SGF (0.137). The impact strength of PP/MAPP/SGF (64.7 MPa) was not only higher than that of PP/SGF (40.8 MPa) by 59% but also higher than that of PP (48.3 MPa) by 34%.

2017 ◽  
Vol 742 ◽  
pp. 482-489 ◽  
Author(s):  
Anselm Heuer ◽  
Pascal Pinter ◽  
Kay André Weidenmann

Additive manufacturing provides the ability to produce structural components featuring complex shapes in one step, compared to traditional methods of production. Therefore, additive manufacturing has recently gained attention for the direct production of parts. Using fibre reinforced filaments offers the opportunity to improve the mechanical properties of FFF printed components. In order to dimension them correctly, the mechanical properties of additive manufactured samples based on glass fibre reinforced filaments were determined. Additionally, the influence of extrusion paths resulting in a distinct fibre orientation were taken into account. Samples were produces by FFF-method (Fused Filament Fabrication) from three materials: Bulk ABS and short glass fibre reinforced ABS featuring 5 wt% and 10 wt% fibre content. Additionally, samples were printed in two different raster orientations of 0° and 90°. Three different sample types were manufactured in order to perform tension, flexural and impact tests. Prior to printing the samples, the slicer parameters were optimized for usage with the fibre reinforced filament. To determine the FOD (Fibre Orientation Distribution) and FLD (Fibre Length Distribution), the samples were scanned using a CT. Results show that fibre reinforced filaments used in this contribution can increase stiffness to 150 % of the bulk material in printing direction with a fibre weight content of 10 %. CT investigations have shown that the orientation of fibres is primary aligned to the printing path.


2001 ◽  
Vol 61 (13) ◽  
pp. 1961-1974 ◽  
Author(s):  
Colin Eberhardt ◽  
Ashley Clarke ◽  
Michel Vincent ◽  
Thomas Giroud ◽  
Sylvain Flouret

Sign in / Sign up

Export Citation Format

Share Document