Study on silica-based rubber composites with epoxidized natural rubber and solution styrene butadiene rubber

2020 ◽  
pp. 096739112097139
Author(s):  
Sung Ho Song

Carbon black has been replaced with silica as a reinforcing filler in tire tread compounds. This change has led to lower rolling resistance and improved hysteretic losses of so-called “green tires.” However, the dispersion of silica in the rubber matrix is an important issue due to the poor compatibility of hydrophilic silica with a hydrophobic rubber matrix. Recently, some rubbers with polar functional groups that can interact with silica have been studied to improve the interaction in silica-filled rubber composites. In this work, we fabricated the silica-filled rubber composites with solution styrene butadiene rubber (SSBR) and epoxidized natural rubber (ENR) and evaluated their properties in a silica-containing rubber formulation compared to conventional SBR and NR. The silica-embedded polar rubber matrix exhibits remarkable enhancement in the modulus, tensile strength, and abrasion properties due to an efficient dispersion of the silica and improvement of interfacial interactions with the rubber matrix. The polar rubber composite exhibits an enhanced dry and wet braking and improved rolling resistance due to the improved dispersion of the silica in the rubber matrix. These results show that rubber composites prepared with polar rubbers have great potential for tire engineering applications.

2020 ◽  
Vol 10 (20) ◽  
pp. 7244
Author(s):  
Sung Ho Song

As eco-friendly “green tires” are being developed in the tire industry, conventionally used carbon black is being replaced with silica in rubber compounds. Generally, as a lubricant and dispersing agent, processing aids containing zinc ions have been employed as additives. However, as zinc is a heavy metal, alternative eco-friendly processing aids are required to satisfy worldwide environmental concerns. Furthermore, non-toxic, degradable, and renewable processing aids are required to improve the mechanical properties of the rubber composites. In this study, we evaluated the effects of diverse silica-based processing aids containing hydrocarbon, benzene, and hydroxyl functional groups on the mechanical properties of rubber composites. Among them, rubber composites that used amphiphilic terpene phenol resin (TPR) with hydrophilic silica showed compatibility with the hydrophobic rubber matrix and were revealed to improve the mechanical and fatigue properties. Furthermore, owing to the enhanced dispersion of silica in the rubber matrix, the TPR/styrene butadiene rubber composites exhibited enhanced wet grip and rolling resistance. These results indicated that TPR had multifunctional effects at low levels and has the potential for use as a processing aid in silica-based rubber composites in tire engineering applications.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
R. Rajasekar ◽  
Gert Heinrich ◽  
Amit Das ◽  
Chapal Kumar Das

The significant factor that determines the improvement of properties in rubber by the incorporation of nanoclay is its distribution in the rubber matrix. The simple mixing of nonpolar rubber and organically modified nanoclay will not contribute for the good dispersion of nanofiller in the rubbery matrix. Hence a polar rubber like epoxidized natural rubber (ENR) can be used as a compatibilizer in order to obtain a better dispersion of the nanoclay in the matrix polymer. Epoxidized natural rubber and organically modified nanoclay composites (EC) were prepared by solution mixing. The nanoclay employed in this study is Cloisite 20A. The obtained nanocomposites were incorporated in styrene butadiene-rubber (SBR) compounds with sulphur as a curing agent. The morphology observed through X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM) shows that the nanoclay is highly intercalated in ENR, and further incorporation of EC in SBR matrix leads to partial exfoliation of the nanoclay. Dynamic mechanical thermal analysis showed an increase in storage modulus and lesser damping characteristics for the compounds containing EC loading in SBR matrix. In addition, these compounds showed improvement in the mechanical properties.


RSC Advances ◽  
2015 ◽  
Vol 5 (111) ◽  
pp. 91262-91272 ◽  
Author(s):  
Juqiao Su ◽  
Qi Yang ◽  
Dahang Tang ◽  
Yajiang Huang ◽  
Zhongguo Zhao ◽  
...  

We propose that modified silica filled rubber composites with moderate silica flocculation possesses preferable resistance to crack growth by the crack tip deflection mechanism.


Sign in / Sign up

Export Citation Format

Share Document