Reference-free damage detection by means of wavelet transform and empirical mode decomposition applied to Lamb waves

2012 ◽  
Vol 24 (2) ◽  
pp. 194-208 ◽  
Author(s):  
Abdollah Bagheri ◽  
Kaiyuan Li ◽  
Piervincenzo Rizzo

Guided ultrasonic waves are increasingly used in all those structural health monitoring applications that benefit from built-in transduction, moderately large inspection ranges, and high sensitivity to small flaws. This article describes a monitoring system based on the generation and detection of the guided ultrasonic waves from an array of sparse transducers. In a round-robin manner, ultrasonic waves are generated and measured from all possible different pairs of excitation and sensing transducers. The ultrasonic signals are then processed using continuous wavelet transform and empirical mode decomposition to extract few damage-sensitive features that enable the detection and localization of damage. With respect to most of the existing guided ultrasonic wave–based methods, the proposed approach does not require to record data from a pristine structure (baseline data), and damage is inferred by examining the selected features obtained from all the possible combinations of actuator–sensor pairs of the array. In this study, the method is validated using commercial finite element software to model the presence of 10 ultrasonic transducers bonded onto an aluminum plate. The results are promising and ongoing studies are focusing on the experimental validation and the application to other waveguides.

2019 ◽  
Vol 9 (3) ◽  
pp. 459 ◽  
Author(s):  
Qingnan Xie ◽  
Chenyin Ni ◽  
Zhonghua Shen

When working in humid environments, corrosion defects are easily produced in metallic plates. For defect detection in underwater plates, symmetric modes of Lamb waves are widely used because of their characteristics including long propagating distance and high sensitivity to defects. In this study, we extend our previous work by applying the laser laterally generated S0 mode to detection and localization of defects represented by artificial notches in an aluminum plate immersed in water. Pure non-dispersive S0 mode is generated in an underwater plate by lateral laser source irradiation and its fd (frequency·thickness) range is selected by theoretical calculation. Using this lateral excitation, the S0 mode is enhanced; meanwhile, the A0 mode is effectively suppressed. The mode-converted A0 mode from the incident S0 mode is used to detect and localize the defect. The results reveal a significantly improved capability to detect defects in an underwater plate using the laser laterally generated S0 mode, while that using A0 is limited due to its high attenuation. Furthermore, owing to the long propagating distance and the non-dispersion characteristics of the S0 generated by the lateral laser source, multiple defects can also be detected and localized according to the mode conversion at the defects.


Sign in / Sign up

Export Citation Format

Share Document