Structural condition assessment using entropy-based time series analysis

2017 ◽  
Vol 28 (14) ◽  
pp. 1941-1956 ◽  
Author(s):  
Mehrisadat Makki Alamdari ◽  
Bijan Samali ◽  
Jianchun Li ◽  
Ye Lu ◽  
Samir Mustapha

We present a time-series-based algorithm to identify structural damage in the structure. The method is in the context of non-model-based approaches; hence, it eliminates the need of any representative numerical model of the structure to be built. The method starts by partitioning the state space into a finite number of subsets which are mutually exclusive and exhaustive and each subset is identified by a distinct symbol. Partitioning is performed based on a maximum entropy approach which takes into account the sparsity and distribution of information in the time series. After constructing the symbol space, the time series data are uniquely transformed from the state space into the constructed symbol space to create the symbol sequences. Symbol sequences are the simplified abstractions of the complex system and describe the evolution of the system. Each symbol sequence is statistically characterized by its entropy which is obtained based on the probability of occurrence of the symbols in the sequence. As a consequence of damage occurrence, the entropy of the symbol sequences changes; this change is implemented to define a damage indicative feature. The method shows promising results using data from two experimental case studies subject to varying excitation. The first specimen is a reinforced concrete jack arch which replicates one of the major structural components of the Sydney Harbor Bridge and the second specimen is a three-story frame structure model which has been tested at Los Alamos National Laboratory. The method not only could successfully identify the presence of damage but also has potential to localize it.

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4112 ◽  
Author(s):  
Se-Min Lim ◽  
Hyeong-Cheol Oh ◽  
Jaein Kim ◽  
Juwon Lee ◽  
Jooyoung Park

Recently, wearable devices have become a prominent health care application domain by incorporating a growing number of sensors and adopting smart machine learning technologies. One closely related topic is the strategy of combining the wearable device technology with skill assessment, which can be used in wearable device apps for coaching and/or personal training. Particularly pertinent to skill assessment based on high-dimensional time series data from wearable sensors is classifying whether a player is an expert or a beginner, which skills the player is exercising, and extracting some low-dimensional representations useful for coaching. In this paper, we present a deep learning-based coaching assistant method, which can provide useful information in supporting table tennis practice. Our method uses a combination of LSTM (Long short-term memory) with a deep state space model and probabilistic inference. More precisely, we use the expressive power of LSTM when handling high-dimensional time series data, and state space model and probabilistic inference to extract low-dimensional latent representations useful for coaching. Experimental results show that our method can yield promising results for characterizing high-dimensional time series patterns and for providing useful information when working with wearable IMU (Inertial measurement unit) sensors for table tennis coaching.


Author(s):  
Subhashis Datta ◽  
Achintya Mukhopadhyay ◽  
Dipankar Sanyal

A nonlinear fourth-order dynamic model of a thermal pulse combustor has been developed. In this work, the time series data generated by solution of the fourth order system is converted into a set of symbols based on the values of pressure variables. The key step to symbolization involves transformation of the original values to a stream of discretised symbols by partitioning the range of observed values into a finite number of regions and then assigning a symbol to each measurement based on the region in which it falls. Once all the measured values are symbolized, a symbol sequence vector consisting of L successive temporal observations is defined and its relative frequency is determined. In this work, the relative frequencies of different symbol sequences are computed by scanning the time series data in forward and reverse directions. The difference between the relative frequencies obtained in forward and reverse scanning is termed as "irreversibility" of the process. It is observed that for given alphabet and word sizes, the "irreversibility" increases as the system approaches extinction. The effects of different choices of alphabet and word sizes are also considered.


Author(s):  
Hung V. Dang ◽  
Mohsin Raza ◽  
Tung V. Nguyen ◽  
T. Bui-Tien ◽  
Huan X. Nguyen

2015 ◽  
Vol 51 (3) ◽  
pp. 200-218 ◽  
Author(s):  
Carissa Sparkes ◽  
Leonard M. Lye ◽  
Susan Richter

Time series data such as monthly stream flows can be modelled using time series methods and then used to simulate or forecast flows for short term planning. Two methods of time series modelling were reviewed and compared: the well-known auto regressive moving average (ARMA) method and the state-space time-series (SSTS) method. ARMA has been used in hydrology to model and simulate flows with good results and is widely accepted for this purpose. SSTS modelling is a more recently developed method that is relatively unused for hydrologic modelling. This paper focuses on modelling the stream flows from basins of different sizes using these two time series modelling methods and comparing the results. Three rivers in Labrador and South-East Quebec were modelled: the Romaine, Ugjoktok and Alexis Rivers. Both models were compared for accuracy of prediction, ease of software use and simplicity of model to determine the preferred time series methodology approach for modelling these rivers. The SSTS was considered very easy to use but model diagnostics were found to require a high level of statistical understanding. Ultimately, the ARMA method was determined to be the better method for the typical engineer to use, considering the diagnostics were simple and the monthly flows could be easily simulated to verify results.


Risks ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 198
Author(s):  
Nataliya Chukhrova ◽  
Arne Johannssen

Often, the claims reserves exceed the available equity of non-life insurance companies and a change in the claims reserves by a small percentage has a large impact on the annual accounts. Therefore, it is of vital importance for any non-life insurer to handle claims reserving appropriately. Although claims data are time series data, the majority of the proposed (stochastic) claims reserving methods is not based on time series models. Among the time series models, state space models combined with Kalman filter learning algorithms have proven to be very advantageous as they provide high flexibility in modeling and an accurate detection of the temporal dynamics of a system. Against this backdrop, this paper aims to provide a comprehensive review of stochastic claims reserving methods that have been developed and analyzed in the context of state space representations. For this purpose, relevant articles are collected and categorized, and the contents are explained in detail and subjected to a conceptual comparison.


2019 ◽  
Vol 11 (3) ◽  
pp. 661-665 ◽  
Author(s):  
Ekta Hooda ◽  
Urmil Verma

Unlike classical regression analysis, the state space models have time-dependent parameters and provide a flexible class of dynamic and structural time series models. The unobserved component model (UCM) is a special type of state space models widely used to analyze and forecast time series. The present investigation has been carried out to study the trend of sugarcane(gur) yield in five districts (Ambala, Karnal, Panipat, Yamunanagar and Kurukshetra) of Haryana state using the unobserved component models with level, trend and irregular components. For this purpose, the time series data on sugarcane yield from 1966-67 to 2016-17 of Ambala and Karnal, 1971-72 to 2016-17 of Kurukshetra and 1980-81 to 2016-17 of Panipat and Yamunanagar districts have been used.   For all the districts, the irregular component was found to be highly significant (p=0.01) while both level and trend component variances were observed non-significant. Significance analysis of the individual component(s) has also been performed for possible dropping of the level and trend components by setting their variances equal to zero. The state space models may be effectively used pertaining to Indian agriculture data, as it takes into account the time dependency of the underlying parameters which may further enhance the predictive accuracy of the most popularly used ARIMA models with parameter constancy. Moreover, the unobserved component model is capable of handling both stationary as well as non-stationary time series and thus found more suitable for sugarcane yield modeling which is a trended yield (i.e. non-stationary in nature).


2020 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
FITRI ANANDA DITA SARASWITA ◽  
I WAYAN SUMARJAYA ◽  
LUH PUTU IDA HARINI

State space is an approach to model and predict together several time series data that are interconnected, and these variables have dynamic interactions. The purpose of this research is to model the number of train passengers in Java and find out the forecasting results using the state space method. The algorithm used to solve the state space model is the Kalman filter. In this research, a suitable final model is local level model with seasonal and produces MAPE value of 2%, this shows that the state space method is very accurately.


Sign in / Sign up

Export Citation Format

Share Document