An effective cell-based smoothed finite element model for the transient responses of magneto-electro-elastic structures

2018 ◽  
Vol 29 (14) ◽  
pp. 3006-3022 ◽  
Author(s):  
Liming Zhou ◽  
Ming Li ◽  
Guangwei Meng ◽  
Hongwei Zhao

To overcome the over-stiffness and the imprecise magneto-electro-elastic coupling effects of finite element model, we presented a cell-based smoothed finite element model to more accurately simulate the transient responses of magneto-electro-elastic structures. In the cell-based smoothed finite element model, the gradient smoothing technique was introduced into a magneto-electro-elastic multi-physical-field finite element model. The cell-based smoothed finite element model can achieve a close-to-exact stiffness of the continuum structures which could automatically discrete elements for complicated regions more readily and thus remarkably reduced the numerical errors. In addition, the modified Wilson- θ method was presented for solving the motion equation of magneto-electro-elastic structures. Several numerical examples were investigated and exhibited that the cell-based smoothed finite element model could receive more accurate and reliable simulation results than the standard finite element model. Besides, the cell-based smoothed finite element model was employed to calculate transient responses of magneto-electro-elastic sensor and typical micro-electro-mechanical systems–based magneto-electro-elastic energy harvester. Therefore, the cell-based smoothed finite element model can be adopted to tackle the practical magneto-electro-elastic problems such as smart vibration transducers, magnetic field sensors, and energy harvester devices in intelligent magneto-electro-elastic structures systems.

2009 ◽  
Vol 327 (1-2) ◽  
pp. 9-25 ◽  
Author(s):  
Carlos De Marqui Junior ◽  
Alper Erturk ◽  
Daniel J. Inman

Author(s):  
Andrew Melro ◽  
Kefu Liu

This paper explores the applicability of using the multiphysics finite element method to model a piezoelectric energy harvester. The piezoelectric energy harvester under consideration consists of a stainless-steel cantilever beam attached by a piezoelectric ceramic patch. Two configurations are considered: one without a proof mass and one with a proof mass. Comsol Multiphysics software is used to simultaneously model three physics: the solid mechanics, the electrostatics, and the electrical circuit physics. Several key relationships are investigated to predict the behaviours of the piezoelectric energy harvester. The effects of the electrical load resistance and a proof mass on the performance of a piezoelectric energy harvester are evaluated. Experimental testing is conducted to validate the results found by the finite element model. Overall, the results from the finite element model closely match those from the experimental testing. It is found that increasing the load resistance of the piezoelectric energy harvester causes an increase in voltage across the load resistor, and matching the impedance yields the maximum power output. Increasing the proof mass reduces the fundamental frequency that results in an increase of the displacement transmissibility and the impedance matched resistance. The study shows that the multiphysics finite element method is effective to model piezoelectric energy harvesters.


Vibration ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 123-137 ◽  
Author(s):  
Germán Martínez-Ayuso ◽  
Hamed Haddad Khodaparast ◽  
Yan Zhang ◽  
Christopher Bowen ◽  
Michael Friswell ◽  
...  

In this paper, a finite element model is coupled to an homogenisation theory in order to predict the energy harvesting capabilities of a porous piezoelectric energy harvester. The harvester consists of a porous piezoelectric patch bonded to the root of a cantilever beam. The material properties of the porous piezoelectric material are estimated by the Mori–Tanaka homogenisation method, which is an analytical method that provides the material properties as a function of the porosity of the piezoelectric composite. These material properties are then used in a finite element model of the harvester that predicts the deformation and voltage output for a given base excitation of the cantilever beam, onto which the piezoelectric element is bonded. Experiments are performed to validate the numerical model, based on the fabrication and testing of several demonstrators composed of porous piezoelectric patches with different percentages of porosity bonded to an aluminium cantilever beam. The electrical load is simulated using a resistor and the voltage across the resistor is measured to estimate the energy generated. The beam is excited in a range of frequencies close to the first and second modes using base excitation. The effects of the porosity and the assumptions made for homogenisation are discussed.


2020 ◽  
pp. 152808372092649 ◽  
Author(s):  
Mohammad Kashfi ◽  
Parisa Fakhri ◽  
Babak Amini ◽  
Neda Yavari ◽  
Bahram Rashidi ◽  
...  

This study presents the experimental characterization and finite element investigation of a piezoelectric nanogenerator based on electrospun poly(vinylidene difluoride) (PVDF) nanofibers walking energy harvesting applications. The piezoelectric response of nanogenerator device was experimentally evaluated under low frequency cyclic impacts using PiezoTester. The impact test was then simulated and the obtained experimental applied force-time curve is implemented into the finite element model as the impactor external force. Based on mentioned procedure, a novel iterative finite element simulation was then introduced to determine the piezoelectric properties of PVDF nanofibers to avoid any redundant experiments. The experimental voltage-time was compared with voltage time obtained from optimized finite element model and a reasonable agreement was achieved between the numerical and experimental curves. Thereinafter, as a case study, a PVDF nanofibers nanogenerator integrated foam (PNIF) was simulated to use as an energy harvester in the shoe insole. The validated finite element model was then constructed to optimize the PNIF elasticity modulus to reach the maximum efficiency of energy harvester during human walking. The results showed that the best efficiency of the energy harvesting is achieved for 211.27 kPa PNIF modulus, which can generate 15.1 V. These results lead to the establishment of engineering design rules in the industrial scale for wearable power harvesting devices in the footwear industry.


2016 ◽  
Vol 248 ◽  
pp. 249-255
Author(s):  
Radosław Nowak ◽  
Marek Pietrzakowski

Machines, cars suspensions, buildings steel constructions etc. usually generate vibrations, which can be the excitement signal for piezoelectric energy harvesters. The piezoelectric patches attached to the vibrating construction have ability to convert mechanical energy of harmful vibrations into electrical energy.The goal of the study was to verify a finite element model of the piezoelectric beam energy harvester by comparing results of numerical simulations with those obtained experimentally. The stand used in the experiment consists of the cantilever beam with piezoelectric elements attached, which is excited by the base harmonic movement. The transverse displacements of the selected beam’s point and the base, and also the frequency of vibrations were observed and measured using an accelerometer and a B&K Pulse platform. A portable data acquisition module was used to quantify the voltage generated by the piezoelectric layers.The finite element model was built in ANSYS software. The beam and piezoelectric layers were modeled by twenty node elements with an additional electric degree of freedom for piezoelectric elements. A full piezoelectric matrix was used in the finite element analysis instead of a one-dimensional piezoelectric effect, which dominates in many analytical approaches. It allowed building a more accurate model of the system. The experimental tests and finite element method simulations were performed and acquired results were compared. The characteristics of voltage amplitude in the time and frequency domain were shown and discussed.


2017 ◽  
Vol 28 (19) ◽  
pp. 2872-2884
Author(s):  
Olga Ganilova ◽  
Aiman Awaludin ◽  
Riguang Dong

The demand for self-sufficient electronic devices is increasing as well as the overall energy use, and such demands are pushing technology forward, especially in effective energy harvesting. A novel hybrid energy harvesting system has been proposed and analysed in this article. It has been demonstrated that the energy harvesting system is capable of converting enough energy to power a typical micro-electro-mechanical system device. This has been achieved through unification of the nine–cymbal energy harvester array, as an energy harvesting core, and shape memory alloy active elements, acting as a source of force stimulated by the environmental changes. A finite element model was developed for the cymbal energy harvester, which was verified and used for the analysis of cymbal energy harvester’s response to the change of the end-cap material. This was followed by the finite element model for the energy harvesting system used for analysis of the location of shape memory alloy wires and force generated by each wire individually and then all together. As a further optimisation of the energy harvesting system, a novel wagon wheel design was explored in terms of its energy harvesting capabilities. As expected, due to the increased displacement, an increase in the power output was achieved.


2020 ◽  
Vol 500 ◽  
pp. 166390
Author(s):  
U. Ahmed ◽  
U. Aydin ◽  
M. Zucca ◽  
S. Palumbo ◽  
R. Kouhia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document