Experimental and Simulation Investigations of the Cantilever Beam Energy Harvester

2016 ◽  
Vol 248 ◽  
pp. 249-255
Author(s):  
Radosław Nowak ◽  
Marek Pietrzakowski

Machines, cars suspensions, buildings steel constructions etc. usually generate vibrations, which can be the excitement signal for piezoelectric energy harvesters. The piezoelectric patches attached to the vibrating construction have ability to convert mechanical energy of harmful vibrations into electrical energy.The goal of the study was to verify a finite element model of the piezoelectric beam energy harvester by comparing results of numerical simulations with those obtained experimentally. The stand used in the experiment consists of the cantilever beam with piezoelectric elements attached, which is excited by the base harmonic movement. The transverse displacements of the selected beam’s point and the base, and also the frequency of vibrations were observed and measured using an accelerometer and a B&K Pulse platform. A portable data acquisition module was used to quantify the voltage generated by the piezoelectric layers.The finite element model was built in ANSYS software. The beam and piezoelectric layers were modeled by twenty node elements with an additional electric degree of freedom for piezoelectric elements. A full piezoelectric matrix was used in the finite element analysis instead of a one-dimensional piezoelectric effect, which dominates in many analytical approaches. It allowed building a more accurate model of the system. The experimental tests and finite element method simulations were performed and acquired results were compared. The characteristics of voltage amplitude in the time and frequency domain were shown and discussed.

Vibration ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 123-137 ◽  
Author(s):  
Germán Martínez-Ayuso ◽  
Hamed Haddad Khodaparast ◽  
Yan Zhang ◽  
Christopher Bowen ◽  
Michael Friswell ◽  
...  

In this paper, a finite element model is coupled to an homogenisation theory in order to predict the energy harvesting capabilities of a porous piezoelectric energy harvester. The harvester consists of a porous piezoelectric patch bonded to the root of a cantilever beam. The material properties of the porous piezoelectric material are estimated by the Mori–Tanaka homogenisation method, which is an analytical method that provides the material properties as a function of the porosity of the piezoelectric composite. These material properties are then used in a finite element model of the harvester that predicts the deformation and voltage output for a given base excitation of the cantilever beam, onto which the piezoelectric element is bonded. Experiments are performed to validate the numerical model, based on the fabrication and testing of several demonstrators composed of porous piezoelectric patches with different percentages of porosity bonded to an aluminium cantilever beam. The electrical load is simulated using a resistor and the voltage across the resistor is measured to estimate the energy generated. The beam is excited in a range of frequencies close to the first and second modes using base excitation. The effects of the porosity and the assumptions made for homogenisation are discussed.


2009 ◽  
Vol 327 (1-2) ◽  
pp. 9-25 ◽  
Author(s):  
Carlos De Marqui Junior ◽  
Alper Erturk ◽  
Daniel J. Inman

Author(s):  
Andrew Melro ◽  
Kefu Liu

This paper explores the applicability of using the multiphysics finite element method to model a piezoelectric energy harvester. The piezoelectric energy harvester under consideration consists of a stainless-steel cantilever beam attached by a piezoelectric ceramic patch. Two configurations are considered: one without a proof mass and one with a proof mass. Comsol Multiphysics software is used to simultaneously model three physics: the solid mechanics, the electrostatics, and the electrical circuit physics. Several key relationships are investigated to predict the behaviours of the piezoelectric energy harvester. The effects of the electrical load resistance and a proof mass on the performance of a piezoelectric energy harvester are evaluated. Experimental testing is conducted to validate the results found by the finite element model. Overall, the results from the finite element model closely match those from the experimental testing. It is found that increasing the load resistance of the piezoelectric energy harvester causes an increase in voltage across the load resistor, and matching the impedance yields the maximum power output. Increasing the proof mass reduces the fundamental frequency that results in an increase of the displacement transmissibility and the impedance matched resistance. The study shows that the multiphysics finite element method is effective to model piezoelectric energy harvesters.


Author(s):  
Ramakrishnan Maruthayappan ◽  
Hamid M. Lankarani

Abstract The behavior of structures under the impact or crash situations demands an efficient modeling of the system for its behavior to be predicted close to practical situations. The various formulations that are possible to model such systems are spring mass models, finite element models and plastic hinge models. Of these three techniques, the plastic hinge theory offers a more accurate model compared to the spring mass formulation and is much simpler than the finite element models. Therefore, it is desired to model the structure using plastic hinges and to use a computational program to predict the behavior of structures. In this paper, the behavior of some simple structures, ranging from an elementary cantilever beam to a torque box are predicted. It is also shown that the plastic hinge theory is a reliable method by comparing the results obtained from a plastic hinge model of an aviation seat structure with that obtained from a finite element model.


Author(s):  
Ugur Aridogan ◽  
Ipek Basdogan ◽  
Alper Erturk

Vibration-based energy harvesting has attracted interest of researchers from various disciplines over the past decade. In the literature of piezoelectric energy harvesting, the typical configuration is a unimorph or a bimorph cantilevered piezoelectric beam located on a vibrating host structure subjected to base excitations. As an alternative to cantilevered piezoelectric beams, piezoelectric layers structurally integrated on thin plates can be used as vibration-based energy harvesters since plates and plate-type structures are commonly used in aerospace, automotive and marine applications. The aim of this paper is to present experiments and electroelastic finite element simulations of a piezoelectric energy harvester structurally integrated on a thin plate. The finite element model of the piezoceramic patch and the all-edges-clamped plate are built. In parallel, an experimental setup is constructed using a thin PZT-5A piezoceramic patch attached on the surface of all-edges-clamped rectangular aluminum plate. The electroelastic frequency response functions relating voltage output and vibration response to forcing input are validated using the experimentally obtained results. Finally, electrical power generation of the piezoceramic patch is investigated using the experimental set-up for a set of resistive loads. The numerical predictions and experimental results show that the use of all-edge-clamped flexible plate as host structure for piezoelectric energy harvester leads to multimodal vibration-to-electricity conversion.


Sign in / Sign up

Export Citation Format

Share Document