A review on modeling techniques of piezoelectric integrated plates and shells

2019 ◽  
Vol 30 (8) ◽  
pp. 1133-1147 ◽  
Author(s):  
Shun-Qi Zhang ◽  
Guo-Zhong Zhao ◽  
Mekala Narasimha Rao ◽  
Rüdiger Schmidt ◽  
Ying-Jie Yu

Piezoelectric materials embedded into plates and shells make the structures being capable of sensing and actuation, usually called smart structures, which are frequently used for shape and vibration control, noise control, health monitoring, and energy harvesting. To give a precise prediction of static and dynamic behavior of smart structures, the linear/nonlinear multi-physics coupled modeling technique is of great importance. The article attempts to present the available research on modeling of piezoelectric integrated plates and shells, including (1) through thickness hypotheses for beams, plates, and shells; (2) geometrically nonlinear theories for plates and shells; (3) electroelastic material linear/nonlinear modeling; (4) multi-physics coupled modeling; and (5) modeling of advanced piezo-fiber composite bonded structures.

Author(s):  
Liuxian Zhao ◽  
Lingyu Yu ◽  
Mattieu Gresil ◽  
Michael Sutton ◽  
Siming Guo

Electromechanical impedance (EMI) method is an effective and powerful technique in structural health monitoring (SHM) which couples the mechanical impedance of host structure with the electrical impedance measured at the piezoelectric wafer active sensor (PWAS) transducer terminals. Due to the electromechanical coupling in piezoelectric materials, changes in structural mechanical impedance are reflected in the electrical impedance measured at the PWAS. Therefore, the structural mechanical resonances are reflected in a virtually identical spectrum of peaks and valleys in the real part of the measured EMI. Multi-physics based finite element method (MP-FEM) has been widely used for the analysis of piezoelectric materials and structures. It uses finite elements taking both electrical and mechanical DOF’s into consideration, which allows good differentiation of complicated structural geometries and damaged areas. In this paper, MP-FEM was then used to simulate PWAS EMI for the goal of SHM. EMI of free PWAS was first simulated and compared with experimental result. Then the constrained PWAS was studied. EMI of both metallic and glass fiber composite materials were simulated. The first case is the constrained PWAS on aluminum beam with various dimensions. The second case studies the sensitivity range of the EMI approach for damage detection on aluminum beam using a set of specimens with cracks at different locations. In the third case, structural damping effects were also studied in this paper.. Our results have also shown that the imaginary part of the impedance and admittance can be used for sensor self-diagnosis.


1994 ◽  
Author(s):  
Phillip W. Mast ◽  
John G. Michopoulos ◽  
Robert Badaliance ◽  
Henry H. Chaskelis

2021 ◽  
pp. 114703
Author(s):  
S.Q. Zhang ◽  
Y.S. Gao ◽  
G.Z. Zhao ◽  
H.Y. Pu ◽  
M. Wang ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4312 ◽  
Author(s):  
Yunzhu Chen ◽  
Xingwei Xue

With the rapid development of the world’s transportation infrastructure, many long-span bridges were constructed in recent years, especially in China. However, these bridges are easily subjected to various damages due to dynamic loads (such as wind-, earthquake-, and vehicle-induced vibration) or environmental factors (such as corrosion). Therefore, structural health monitoring (SHM) is vital to guarantee the safety of bridges in their service lives. With its wide frequency response range, fast response, simple preparation process, ease of processing, low cost, and other advantages, the piezoelectric transducer is commonly employed for the SHM of bridges. This paper summarizes the application of piezoelectric materials for the SHM of bridges, including the monitoring of the concrete strength, bolt looseness, steel corrosion, and grouting density. For each problem, the application of piezoelectric materials in different research methods is described. The related data processing methods for four types of bridge detection are briefly summarized, and the principles of each method in practical application are listed. Finally, issues to be studied when using piezoelectric materials for monitoring are discussed, and future application prospects and development directions are presented.


Sign in / Sign up

Export Citation Format

Share Document