Self-sensing feedback control of multiple interacting shape memory alloy actuators in a 3D steerable active needle

2020 ◽  
Vol 31 (12) ◽  
pp. 1524-1540
Author(s):  
Saeed Karimi ◽  
Bardia Konh

Percutaneous needle-based intervention is a technique used in minimally invasive surgical procedures such as brachytherapy, thermal ablation, and biopsy. Targeting accuracy in these procedures is a defining factor for success. Active needle steering introduces the potential to increase the targeting accuracy in such procedures to improve the clinical outcome. In this work, a novel 3D steerable active flexible needle with shape memory alloy actuators was developed. Active needle actuation response to a variety of actuation scenarios was analyzed to develop a kinematic model. Shape memory alloy actuators were characterized in terms of their actuation strain, electrical resistance, and required electrical power to design a self-sensing electrical resistance feedback control system for position tracking control of the active needle. The control system performance was initially tested in position tracking control of a single shape memory alloy actuator and then was implemented on multiple interacting shape memory alloy actuators to manipulate the 3D steerable active needle along a reference path. The electrical resistance feedback control of the multiple interacting shape memory alloy actuators enabled the active needle to reach target points in a planar workspace of about 20 mm. Results demonstrated shape memory alloys as promising alternatives for traditional actuators used in surgical instruments with enhanced design, characterization, and control capabilities.

Author(s):  
B. Y. Ren ◽  
B. Q. Chen

The different Shape Memory Alloy (SMA) actuators have been widely used in the fields of smart structures. However, the accurate prediction of thermomechanical behavior of SMA actuators is very difficult due to the nonlinearity of inherence hysteresis of SMA. Therefore, the tracking control accuracy of SMA actuator is very important for the practical application of the SMA actuator. A dynamic hysteresis model of bias-type SMA actuator based on constitutive law developed by Brinson et al. and hysteresis model developed by Ikuta et al. is presented. The control systems composed of the Proportional Integral Derivative (PID) controller as well as a fuzzy controller or a fuzzy-PID composite controller for compensating the hysteresis is proposed. The effort of tracking control system is analyzed according to the simulation on the displacement of SMA actuator with the three kinds of controllers. The result can provide a reference for the application of SMA actuator in the fields of smart structures.


Sign in / Sign up

Export Citation Format

Share Document