Leg Coordination Mechanisms in the Stick Insect Applied to Hexapod Robot Locomotion

1993 ◽  
Vol 1 (4) ◽  
pp. 455-468 ◽  
Author(s):  
Kenneth S. Espenschied ◽  
Hillel J. Chiel ◽  
Roger D. Quinn ◽  
Randall D. Beer
2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Halvor T. Tramsen ◽  
Lars Heepe ◽  
Jettanan Homchanthanakul ◽  
Florentin Wörgötter ◽  
Stanislav N. Gorb ◽  
...  

AbstractLegged locomotion of robots can be greatly improved by bioinspired tribological structures and by applying the principles of computational morphology to achieve fast and energy-efficient walking. In a previous research, we mounted shark skin on the belly of a hexapod robot to show that the passive anisotropic friction properties of this structure enhance locomotion efficiency, resulting in a stronger grip on varying walking surfaces. This study builds upon these results by using a previously investigated sawtooth structure as a model surface on a legged robot to systematically examine the influences of different material and surface properties on the resulting friction coefficients and the walking behavior of the robot. By employing different surfaces and by varying the stiffness and orientation of the anisotropic structures, we conclude that with having prior knowledge about the walking environment in combination with the tribological properties of these structures, we can greatly improve the robot’s locomotion efficiency.


2020 ◽  
Author(s):  
Md Masum Billah ◽  
Abdul Malik Mohd Ali ◽  
Zulkhairi Mohd Yusof ◽  
Kushsairy Kadir ◽  
Kanendra Naidu Vijyakumar

1984 ◽  
Vol 110 (1) ◽  
pp. 203-216
Author(s):  
JEFFREY DEAN ◽  
GERNOT WENDLER

The relationship between standing and steady walking was investigated for stick insects walking on a wheel. Normal hexapod coordination patterns ensure that each point in the gait cycle has static stability. Nevertheless, stick insects show preferred stopping sequences: the final protraction in ipsilateral metachronal sequences is most often by a front leg and least often by a rear leg (Fig. 1, Table 1). The associated preferred stance is one in which front, middle, and rear legs are spread apart (Fig. 2). This preferred stance does not conform precisely to those of steady walking, necessitating small adjustments to the walk in the final steps. First, the final leg protraction often occurs in the absence of strong retraction by the supporting legs. Second, the insect often takes advantage of the left/right asymmetry, letting rear and middle legs on the leading side retract beyond their normal endpoints while completing the metachronal sequence on the trailing side. Walking typically resumes with an initial retraction by all legs. Stances are close enough to leg configurations of steady walking that metachronal rhythms are often continuous across pauses, a feature which suggests that leg coordination is affected by peripheral parameters, such as leg position.


1992 ◽  
Vol 4 (3) ◽  
pp. 356-365 ◽  
Author(s):  
Randall D. Beer ◽  
Hillel J. Chiel ◽  
Roger D. Quinn ◽  
Kenneth S. Espenschied ◽  
Patrik Larsson

We present fully distributed neural network architecture for controlling the locomotion of a hexapod robot. The design of this network is directly based on work on the neuroethology of insect locomotion. Previously, we demonstrated in simulation that this controller could generate a continuous range of statically stable insect-like gaits as the activity of a single command neuron was varied and that it was robust to a variety of lesions. We now report that the controller can be utilized to direct the locomotion of an actual six-legged robot, and that it exhibits a range of gaits and degree of robustness in the real world that is quite similar to that observed in simulation.


Sign in / Sign up

Export Citation Format

Share Document