Free Flight Cockpit Displays of Traffic and Weather: Effects of Dimensionality and Data Base Integration

Author(s):  
Janelle Viera O'Brien ◽  
Christopher D. Wickens

In any Free Flight system, pilots must have displays which effectively depict traffic and weather information as more and more responsibility for separation from such hazards transfers from air traffic controllers to pilots. This research effort seeks to address the issues of dimensionality (3D versus 2D coplanar displays) and data base integration (separation or integration of traffic and weather information within displays). Seventeen general aviation flight instructors flew a series of en route trials with four display types in which dimensionality, data base integration, and hazard geometries were manipulated. Analysis of the data revealed that the 2D displays resulted in a smaller percentage of conflicts with traffic and weather hazards. The results also suggested that displays in which traffic and weather were integrated resulted in fewer hazard conflicts for trials in which both hazard types were critical to maneuver selection. Maneuver strategy was also found to vary by scenario geometry.

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 341
Author(s):  
Carolina Rodriguez-Paras ◽  
Johnathan T. McKenzie ◽  
Pasakorn Choterungruengkorn ◽  
Thomas K. Ferris

Despite the increasing availability of technologies that provide access to aviation weather information in the cockpit, weather remains a prominent contributor to general aviation (GA) accidents. Pilots fail to detect the presence of new weather information, misinterpret it, or otherwise fail to act appropriately on it. When cognitive demands imposed by concurrent flight tasks are high, the risks increase for each of these failure modes. Previous research shows how introducing vibrotactile cues can help ease or redistribute some of these demands, but there is untapped potential in exploring how vibratory cues can facilitate “interruption management”, i.e., fitting the processing of available weather information into flight task workflow. In the current study, GA pilots flew a mountainous terrain scenario in a flight training device while receiving, processing, and acting on various weather information messages that were displayed visually, in graphical and text formats, on an experimental weather display. Half of the participants additionally received vibrotactile cues via a connected smartwatch with patterns that conveyed the “severity” of the message, allowing pilots to make informed decisions about when to fully attend to and process the message. Results indicate that weather messages were acknowledged more often and faster when accompanied by the vibrotactile cues, but the time after acknowledgment to fully process the messages was not significantly affected by vibrotactile cuing, nor was overall situation awareness. These findings illustrate that severity-encoded vibrotactile cues can support pilot awareness of updated weather as well as task management in processing weather messages while managing concurrent flight demands.


2021 ◽  
Vol 11 (2) ◽  
pp. 79-87
Author(s):  
Meredith Carroll ◽  
Paige Sanchez ◽  
Donna Wilt

Abstract. The purpose of this study was to examine how pilots respond to conflicting information on the flight deck. In this study, 108 airline, corporate, and general aviation pilots completed an online questionnaire reporting weather, traffic, and navigation information conflicts experienced on the flight deck, including which information sources they trusted and acted on. Results indicated that weather information conflicts are most commonly experienced, and typically between a certified source in the panel and an uncertified electronic flight bag application. Most participants (a) trusted certified systems due to their accuracy, reliability, recency, and knowledge about the source, and (2) acted on the certified system due to trust, being trained and required to use it, and its indicating a more hazardous situation.


2017 ◽  
Vol 13 (S335) ◽  
pp. 348-351 ◽  
Author(s):  
Francesco Berrilli ◽  
Marco Casolino ◽  
Dario Del Moro ◽  
Roberta Forte ◽  
Luca Giovannelli ◽  
...  

AbstractThe Space WEeatherR TOr vergata university (SWERTO) service is an operational Space Weather service based on multi-instrument data from space-based (PAMELA, ALTEA) and ground-based (IBIS, MOTHII) instruments. The service (spaceweather.roma2.infn.it) is located at the Physics Department of the University of Rome Tor Vergata, Italy (UTOV) and will allow registered users to access scientific data from instrumentation available to UTOV researchers through national and international collaborations. It will provide intuitive software for the selection and visualization of such data and results from prototype forecasting codes for flare probability and Solar Energetic Particle (SEP) fluxes. The service is designed to promote access to technical and scientific information by the regional industries which employ technologies vulnerable to Space Weather effects. Basically, SWERTO aims to: i) design and construct a data-base with particle fluxes recorded by space missions and spectro-polarimetric measurements of the solar photosphere; ii) allow an Open Access to the data-base and to prototype forecasts to regional industries involved and exposed to Space Weather effects; iii) implement a tutorial and a FAQ section to help decision makers to became aware of and evaluate the risks from Space Weather events; iv) outreach and customer products. SWERTO has been financed by the Regione Lazio FILAS-RU-2014-1028 grant.


Author(s):  
Kara A. Latorella ◽  
James P. Chamberlain

We commonly describe environments and behavioral responses to environmental conditions as “tactical” and “strategic.” However theoretical research defining relevant environmental characteristics is rare, as are empirical investigations that would inform such theory. This paper discusses General Aviation (GA) pilots' descriptions of tactical/strategic conditions with respect to weather flying, and evaluates their ratings along a tactical/strategic scale in response to real convective weather scenarios experienced during a flight experiment with different weather information cues. Perceived risk was significantly associated with ratings for all experimental conditions. In addition, environmental characteristics were found to be predictive of ratings for Traditional IMC (instrument meteorological conditions), i.e., aural weather information only, and Traditional VMC (visual meteorological conditions), i.e., aural information and an external view. The paper also presents subjects' comments regarding use of Graphical Weather Information Systems (GWISs) to support tactical and strategic weather flying decisions and concludes with implications for the design and use of GWISs.


2000 ◽  
Vol 203 (18) ◽  
pp. 2723-2735 ◽  
Author(s):  
H. Fischer ◽  
W. Kutsch

Little information is available about how the adult locust flight system manages to match the aerodynamic demands that result from an increase in body mass during postmoult maturation. In Schistocerca gregaria of both sexes, flight variables, including flight speed, ascent angle and body angle, were investigated under closed-loop conditions (i.e. during free flight) as a function of adult maturation. Motor patterns were examined by telemetric electromyography in juvenile and adult mature animals of both sexes. Functional relationships between particular flight variables were investigated by additional loading of the animals and by reductions in wing area. The results indicate that an increase in flight speed as the flight system matures enables it to match the aerodynamic demands resulting from increases in body mass. Furthermore, the data suggest that this postmoult increase in flight speed is not simply a consequence of the increase in wingbeat frequency observed during maturation. The instantaneous body angle during flight is controlled mainly by aerodynamic output from the wings. In addition, the mean body angle decreases during maturation in both sexes, and this may play an important part in the directional control of the resultant flight force vector.


Sign in / Sign up

Export Citation Format

Share Document