Geometric nonlinear finite element and genetic algorithm based optimal vibration energy harvesting from nonprismatic axially functionally graded piezolaminated beam

2016 ◽  
Vol 24 (10) ◽  
pp. 1889-1909 ◽  
Author(s):  
Alok Ranjan Biswal ◽  
Tarapada Roy ◽  
Rabindra Kumar Behera
Author(s):  
Alok Ranjan Biswal ◽  
Tarapada Roy ◽  
Rabindra Kumar Behera

The current article deals with finite element (FE)- and genetic algorithm (GA)-based vibration energy harvesting from a tapered piezolaminated cantilever beam. Euler–Bernoulli beam theory is used for modeling the various cross sections of the beam. The governing equation of motion is derived by using the Hamilton's principle. Two noded beam elements with two degrees of freedom at each node have been considered in order to solve the governing equation. The effect of structural damping has also been incorporated in the FE model. An electric interface is assumed to be connected to measure the voltage and output power in piezoelectric patch due to charge accumulation caused by vibration. The effects of taper (both in the width and height directions) on output power for three cases of shape variation (such as linear, parabolic and cubic) along with frequency and voltage are analyzed. A real-coded genetic algorithm-based constrained (such as ultimate stress and breakdown voltage) optimization technique has been formulated to determine the best possible design variables for optimal harvesting power. A comparative study is also carried out for output power by varying the cross section of the beam, and genetic algorithm-based optimization scheme shows the better results than that of available conventional trial and error methods.


2017 ◽  
Vol 29 (7) ◽  
pp. 1333-1347 ◽  
Author(s):  
Dominik Gedeon ◽  
Stefan J Rupitsch

We present a system simulation approach for piezoelectric vibration energy harvesting devices. Accurate modeling of the electromechanical structure is achieved by the finite element method. For consideration of power electronic circuits as a means of energy extraction, the finite element model is iteratively coupled to electric circuits via Simulink. The high computational cost of conventional finite element calculations is overcome by a specialized modal truncation method for general linear piezoelectric structures. In doing so, the simulation approach allows efficient prediction of mechanical quantities (e.g. displacements, stresses) as well as electric potentials in the continuum under the influence of arbitrary electrical circuits. Several examples are studied to validate the truncation approach against analytical models and full finite element models. The applicability of the method is demonstrated for a piezoelectric vibration energy harvester in conjunction with a power electronic circuit.


2017 ◽  
Vol 28 (14) ◽  
pp. 1957-1976 ◽  
Author(s):  
Alok Ranjan Biswal ◽  
Tarapada Roy ◽  
Rabindra Kumar Behera

Optimal vibration–based energy harvesting from the axially functionally graded non-prismatic piezolaminated cantilever beam using finite element and genetic algorithm has been proposed in this article. The functionally graded material (i.e. non-homogeneous) in the axial direction is considered, where the cross section is varied (continuously decreasing from root to tip of such cantilever beam) using a proposed power law formula. The shape variations of piezolaminated cantilever (such as linear, parabolic and cubic) have been modelled using the Euler–Bernoulli beam theory. Hamilton’s principle is used in order to derive the governing equation of motion. The governing equation is solved by considering two-noded beam element with 2 degrees of freedom at each node. The responses (such as frequency, voltage and output power) are compared between uniform and the axially functionally graded beam with arbitrary power gradient index. The effects of taper (both in the width and height directions) on output power along with frequency and voltage are analysed for axially functionally graded beam. In order to maximise the output power within the allowable limits of voltage and stresses, a real-coded genetic algorithm–based constrained optimisation technique has been proposed.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


Sign in / Sign up

Export Citation Format

Share Document