Adaptive hybrid control of unbalanced vibrations of a rotor/active magnetic bearing system with coupling misalignment using low cost instrumentation

2019 ◽  
Vol 25 (15) ◽  
pp. 2151-2174
Author(s):  
Rajiv Kumar Vashisht ◽  
Qingjin Peng

An adaptive hybrid controller is proposed for reducing the unbalanced vibration response of a flexible rotor/active magnetic bearing system. It is observed that conventional adaptive feedforward controller (AFFC) normally used in the active noise control is very sensitive in performance for changes in rotor spin frequencies. Although frequency updating is a part of its architecture, a small practical variation in the rotor spin frequency can reduce its effectiveness drastically. A smart combination of adaptive notch filter and Goertzel filter is proposed for the frequency estimation. During changes of the rotor spin frequency, fundamental harmonics of the flexible rotor are excited. By using hybrid controllers that combine feedback control and AFFC, the amplitude of these fundamental harmonics is reduced significantly. By applying the multi-harmonic hybrid control, the multiple harmonics generated due to coupling misalignment are compensated efficiently. Fourier transform of the control signal is further used to detect the presence of the coupling misalignment.

Author(s):  
Yingguang Wang ◽  
Jiancheng Fang ◽  
Shiqiang Zheng

For a magnetically levitated flexible rotor (MLFR), the amount of residual imbalance not only generates undesired vibrations, but also results in excessive bending, which may cause it hit to the auxiliary bearings. Thus, balancing below the critical speed is essential for the MLFR to prevent the impact. This paper proposes a balancing method of high precision and high efficiency, basing on virtual trial-weights. First, to reduce the computed error of rotor's mode shapes, a synchronous notch filter is inserted into the active magnetic bearing (AMB) controller, achieving a free support status. Then, AMBs provide the rotor with the synchronous electromagnetic forces (SEFs) to simulate the trial-weights. The SEFs with the initial angles varying from 0 deg to 360 deg in the rotational frame system result in continuous changes in the MLFR's deflection. Last, correction masses are calculated according to the changes. Compared to the trail-weights method, the new method needs not test-runs, which improves the balancing efficiency. Compared to the no trail-weights method, the new method does not require a precise model of the rotor-bearing system, which is difficult to acquire in the real system. Experiment results show that the novel method can reduce the residual imbalance effectively and accurately.


Sensors ◽  
2014 ◽  
Vol 14 (7) ◽  
pp. 12640-12657 ◽  
Author(s):  
Seng-Chi Chen ◽  
Dinh-Kha Le ◽  
Van-Sum Nguyen

2007 ◽  
Vol 98 (1) ◽  
pp. 8-12
Author(s):  
E.O. Ranft ◽  
G. van Schoor ◽  
J.G. Roberts

2014 ◽  
Vol 49 (1-2) ◽  
pp. 302-316 ◽  
Author(s):  
Zhe Sun ◽  
Ying He ◽  
Jingjing Zhao ◽  
Zhengang Shi ◽  
Lei Zhao ◽  
...  

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Rajiv Kumar Vashisht ◽  
Qingjin Peng

Abstract For the reduction of unbalanced vibrations in a multi-input and multi-output flexible rotor system with electromagnetic actuators (EAs), conventional adaptive feedforward controllers (AFFCs) are very sensitive for changes in rotor spin frequencies. Although frequency updating is used in these controllers, a small variation in the rotor spin frequency can completely reduce their effectiveness. An adaptive notch filter is used in this research for the frequency estimation. By using this external frequency estimation, the performance of the conventional AFFCs can be enhanced. During changes in the rotor spin frequency, fundamental harmonics of the flexible rotor are also excited. Their amplitude is much higher compared to steady-state unbalanced vibrations, which can accelerate the wear and tear of components of EAs. By using feedback controllers, the amplitude of these fundamental harmonics can be reduced significantly. In real rotors with flexible bearing supports, any looseness of bolts and presence of transverse cracks can change system parameters significantly. Multiple harmonics are generated corresponding to even single spinning speed of the rotor. Robust stability as well as performance can be achieved in the presence of uncertainty and rotor crack nonlinearities using feedback controllers designed by mu-synthesis. By using the multiharmonic hybrid control, the higher harmonics can be compensated efficiently in case of a crack in rotor systems. The fast Fourier transform of the control signal can indicate the presence of a transverse crack in an online manner. In this way, active vibration control as well as rotor crack fault detection can be done simultaneously.


2021 ◽  
pp. 107754632110109
Author(s):  
Peiling Cui ◽  
Liang Du ◽  
Xinxiu Zhou ◽  
Jinlei Li ◽  
Yanbin Li ◽  
...  

The active magnetic bearing system exhibits mass imbalance and sensor runout which cause the system to generate harmonic vibration force and moment. Repetitive control is an effective method to eliminate such harmonic vibration. Traditional repetitive control will eliminate all of the harmonic frequency components. However, in a practical system, the odd harmonic components usually dominate. Meanwhile, the existing method only suppresses the vibration force in the magnetic bearing system, and there is little research on the suppression of moment. Aiming at these problems, the harmonic vibration moment of the active magnetic bearing system is taken as the control object. This study investigates a hybrid control method that combines a second-order odd harmonic repetitive control with finite-dimensional repetitive control. And the virtual variable sampling is applied to construct any virtual sampling period in the proposed method, which effectively solves the problem of non-integer delay of digital repetitive control. The stability of the active magnetic bearing system is analyzed. The experimental results show that this method has faster response speed and better robustness when the frequency fluctuates.


2021 ◽  
Vol 69 (2) ◽  
pp. 136-145
Author(s):  
S. Roopa ◽  
S.V. Narasimhan

A stable feedback active noise control (FBANC) system with an improved performance in a broadband disturbance environment is proposed in this article. This is achieved by using a Steiglitz-McBride adaptive notch filter (SM-ANF) and robust secondary path identification (SPI) both based on variable step size Griffiths least mean square (LMS) algorithm. The broadband disturbance severely affects not only FBANC input synthesized but also the SPI.TheSM-ANFestimated signal has narrowband component that is utilized for the FBANC input synthesis. Further, the SM-ANF error has broadband component utilized to get the desired signal for SPI. The use of variable step size Griffiths gradient LMS algorithm for SPI enables the removal of broadband disturbance and non-stationary disturbance from the available desired signal for better SPI. For a narrowband noise field, the proposed FBANC improves the convergence rate significantly (20 times) and the noise reduction from 10 dB to 15 dB (50%improvement) over the conventional FBANC (without SM-ANF and variable step size Griffiths LMS adaptation for SPI).


Sign in / Sign up

Export Citation Format

Share Document