Robust finite-time controller for damping of subsynchronous resonance in doubly fed induction generator wind farm

2020 ◽  
pp. 107754632092449
Author(s):  
Penghan Li ◽  
Jie Wang ◽  
Linyun Xiong ◽  
Meiling Ma ◽  
Muhammad W Khan ◽  
...  

To alleviate subsynchronous resonance in doubly fed induction generator–based wind farm, this study devises a robust nonlinear control for a rotor-side converter based on a fractional-order sliding mode controller. The designed fractional-order sliding mode controller is able to realize finite-time control and reduce the control time compared with terminal sliding mode control, which contributes to the faster mitigation of subsynchronous resonance. Impedance-based analysis and transient simulation are carried out to evaluate the performance of the fractional-order sliding mode controller compared with terminal sliding mode control and subsynchronous damping control. Simulation results verify that the fractional-order sliding mode controller is able to damp SSR within shorter time and effectively reduce the fluctuation range of a system’s transient responses under various working conditions of compensation degrees and wind speeds. Furthermore, the fractional-order sliding mode controller enhances the robustness under external disturbance and parametric uncertainty, ensuring safe operation of the practical wind farm.


2020 ◽  
pp. 107754632092526
Author(s):  
Amir Razzaghian ◽  
Reihaneh Kardehi Moghaddam ◽  
Naser Pariz

This study investigates a novel fractional-order nonsingular terminal sliding mode controller via a finite-time disturbance observer for a class of mismatched uncertain nonlinear systems. For this purpose, a finite-time disturbance observer–based fractional-order nonsingular terminal sliding surface is proposed, and the corresponding control law is designed using the Lyapunov stability theory to satisfy the sliding condition in finite time. The proposed fractional-order nonsingular terminal sliding mode control based on a finite-time disturbance observer exhibits better control performance; guarantees finite-time convergence, robust stability of the closed-loop system, and mismatched disturbance rejection; and alleviates the chattering problem. Finally, the effectiveness of the proposed fractional-order robust controller is illustrated via simulation results of both the numerical and application examples which are compared with the fractional-order nonsingular terminal sliding mode controller, sliding mode controller based on a disturbance observer, and integral sliding mode controller methods.



Author(s):  
Bouiri Abdesselam ◽  
Benoudjafer Cherif ◽  
Boughazi Othmane ◽  
Abdallah Abden ◽  
Chojaa Hamid

<p><span lang="EN-US">Due to drawbacks of classical linear controller like proportional-integral (PI), many studies have been used non-linear controller specially when it comes to robustness, but this is less efficient in sliding mode controller (SM) due to the sign function, this function is known as a problem chattering phenomenon, this main disadvantage it can be compensated by Lyapunov backstepping condition, This paper presents nonlinear power control strategy of the doubly-fed-induction generator (DFIG) for wind application system (WAS) using sliding mode combining with backstepping controller (SM-BS) to control produced statoric powers to mitigate unnecessary chattering effects inherent in traditional SMC, to check the effectiveness of the controller, we compare performance of sliding mode controller and sliding mode controller combining with backstepping (SM-BS) in terms of required reference tracking, robustness under parametric variations of the generator, sensitivity to perturbations and reaction to speed variations under investigating further of the chattering phenomenon.</span></p>



Sign in / Sign up

Export Citation Format

Share Document