Line spectra chaotification of the nonlinear vibration isolation system on the flexible foundation based on the open-plus-nonlinear-closed-loop method

2020 ◽  
pp. 107754632093376
Author(s):  
Kai Chai ◽  
Shuang Li ◽  
Jun J Lou ◽  
Xiang Yu ◽  
Yong S Liu ◽  
...  

Line spectra chaotification is a principal method to weaken or eliminate the line spectra feature of submarines. However, this method is difficult to obtain chaos under the variable working conditions and small amplitudes. Furthermore, there are multistable attractors in the nonlinear vibration isolation system simultaneously. So, the quality of chaos highly depends on initial conditions and systematic parameters. In this study, the attractor entrainment control and line spectra chaotification of a nonlinear vibration isolation system on the flexible foundation have been studied by using the open-plus-nonlinear-closed-loop method. First, the dynamic equation of the nonlinear vibration isolation system on the flexible foundation was formulated, and its exhaustive bifurcation characteristics were analyzed. The regulations of global characteristics and coexistent attractors were found out. Second, the entrainments between the different attractors were carried out under the open-plus-nonlinear-closed-loop control, which can ensure the system always works in the lowest line spectra intensity and the best overall vibration isolation performance. Finally, an open-plus-nonlinear-closed-loop coupling method was used to achieve generalized chaotic synchronization between the driving system and the response system, which effectively obtained sustainable chaos even under variable working conditions and small amplitudes. Simulation results validate the feasibility and validity of the open-plus-nonlinear-closed-loop method, which achieves the dual goals of effective vibration isolation in the low frequency range and line spectra chaotification under variable working conditions.

2013 ◽  
Vol 419 ◽  
pp. 223-227 ◽  
Author(s):  
Rui Huo ◽  
Hui Yu ◽  
Yan Feng Guan

In view of its prototype in engineering application, a theoretical model of multi-supported nonlinear vibration isolation system installed on flexible foundation is studied, including derivation of system dynamic equations and analysis of system dynamic characteristics. For effectiveness evaluation of nonlinear vibration isolation systems, a generalized time-averaged power is proposed as an extension of classical theory of vibratory power flow, and a numerical solution method of time-averaged power is probed accompanying with the numerical solution of nonlinear dynamic equations. In a further concrete calculation example, an air spring vibration isolation system of a small UAV engine is numerically simulated based on Runge-Kutta method, and dynamic behavior and power flow transmission characteristics influenced by system parameters are investigated.


2014 ◽  
Vol 1030-1032 ◽  
pp. 766-769
Author(s):  
Shu Ying Li ◽  
Rui Huo ◽  
Xing Ke Cui ◽  
Cui Ping Liu ◽  
Dao Kun Zhang

In this paper,a general dynamic model of the isolation coupled system which is composed of isolation object,nonlinear vibration isolation support,and flexible foundation is established,calculated method of applying vibration power flow to analyze isolation effectiveness is studied.Further more,as an calculation example,a air spring vibration isolation system of HS-700 engines is numerically simulated.Designs several low-frequency nonlinear vibration isolators and analyzes its vibration isolation effect.It discusses the effect of the vibration isolator parameters on the transmitted power flow of the system.The results provide a theoretical basis for the optimized design of nonlinear vibration isolation system.


2011 ◽  
Vol 55-57 ◽  
pp. 872-876
Author(s):  
De Zhen Feng ◽  
Fang Zhou ◽  
Zai Mei Zhang ◽  
Hua Guan Liu

The paper analyzes the dynamic relation of asymmetric multi-supported vibration isolation system with flexible foundation, establishes the comprehensive model of passive control and positive control system by using the effective matrix analysis method, analyzes the transmission mechanism and characteristic of vibrational power flow in the flexible vibration isolation system. In order to meet the need of the practical engineering, the paper analyzes and calculates the effect of the machine mass on the input and the transmission power flow in detail. At last, the paper puts forward the measure to reduce vibration energy transmission.


Sign in / Sign up

Export Citation Format

Share Document