Modal effective electromechanical coupling coefficient of shear-mode piezoceramic sandwich cantilevers with segmented multicore: Experimental and numerical assessments

2020 ◽  
pp. 107754632097290
Author(s):  
Pelin Berik ◽  
Ayech Benjeddou

Smart sandwich cantilevers with aluminum faces and single and double cores, formed by assembled shear-mode piezoceramic patches with same poling, are experimentally and numerically assessed for the first time. To measure the electromechanical coupling efficiency of such vibrating smart structures, the so-called modal effective electromechanical coupling coefficient is used as a performance indicator. Hence, it is first experimentally analyzed under different electric connections (short circuit, open circuit, series wiring, and parallel wiring) of the patches’ electrodes; then, it is numerically investigated for models with different refinements (equipotential constraints and bonding adhesives) using ABAQUS® three-dimensional finite element simulations. It is found that the experimental modal effective electromechanical coupling coefficient is low for the smart shear-mode piezoceramic single core sandwich but can be increased using multilayer designs, as confirmed by the smart shear-mode piezoceramic double core sandwich. Numerically, it is found that the electric connection has less influence on the modal effective electromechanical coupling coefficient evaluation than the equipotential constraints and adhesives modeling, in particular for the smart shear double core sandwich. The proposed two benchmarks can be used by the research community of smart structures, systems, and devices for validating new shear-mode response-based theories and numerical models or designing related engineering applications, such as shunted damping, energy harvesting, structural health monitoring, resonators, and filters.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4785
Author(s):  
Xiaoyu Wang ◽  
Shuyu Lin

The radial vibration of a radial composite tubular transducer with a large radiation range and power capacity is studied. The transducer is composed of a longitudinally polarized piezoelectric ceramic tube and a coaxial outer metal tube. Assuming that the longitudinal length is much larger than the radius, the electromechanical equivalent circuits of the radial vibration of a piezoelectric ceramic long tube and a metal long tube are derived and obtained for the first time following the plane strain theory. As per the condition of the continuous forces and displacements of two contact surfaces, the electromechanical equivalent circuit of the tubular transducer is obtained. The radial resonance/anti-resonance frequency equation and the expression of the effective electromechanical coupling coefficient are obtained. Then, the effects of the radial geometry dimension of the transducer on the vibration characteristics are analyzed. The theoretical resonance frequencies, anti-resonance frequencies, and the effective electromechanical coupling coefficients at the fundamental mode and the second mode are in good agreement with the finite element analysis (FEA) results. The study shows that when the overall size of the transducer is unchanged, as the proportion of piezoelectric ceramic increases, the radial resonance/anti-resonance frequency and the effective electromechanical coupling coefficient of the transducer at the fundamental mode and the second mode have certain characteristics. The radial composite tubular transducer is expected to be used in high-power ultrasonic wastewater treatment, ultrasonic degradation, and underwater acoustics, as well as other high-power ultrasonic fields.


Sign in / Sign up

Export Citation Format

Share Document