It takes a village to raise awareness of and to address surface contamination of hazardous drugs

2017 ◽  
Vol 23 (7) ◽  
pp. 558-560
Author(s):  
William C Zamboni ◽  
Stephanie A Salch ◽  
Joshua Cox ◽  
Stephen Eckel
2021 ◽  
pp. 107815522110235
Author(s):  
Hao ML ◽  
Wang T ◽  
Zhu JQ ◽  
Song YJ ◽  
Gong TJ ◽  
...  

Objectives The aims of the study were to evaluate the external contamination of hazardous drug vials used in Chinese hospitals and to compare environmental contamination generated by a robotic intelligent dispensing system (WEINAS) and a manual compounding procedure using a biological safety cabinet (BSC). Methods Cyclophosphamide, fluorouracil, and gemcitabine were selected as the representative hazardous drugs to monitor surface contamination of vials. In the comparative analysis of environmental contamination from manual and robotic compounding, wipe samples were taken from infusion bags, gloves, and the different locations of the BSC and the WEINAS robotic system. In this study, high-performance liquid chromatography coupled with double mass spectrometer (HPLC-MS/MS) was employed for sample analysis. Results (1) External contamination was measured on vials of all three hazardous drugs. The contamination detected on fluorouracil vials was the highest with an average amount up to 904.33 ng/vial, followed by cyclophosphamide (43.51 ng/vial), and gemcitabine (unprotected vials of 5.92 ng/vial, protected vials of 0.66 ng/vial); (2) overall, the environmental contamination induced by WEINAS robotic compounding was significantly reduced compared to that by manual compounding inside the BSC. Particularly, compared with manual compounding, the surface contamination on the infusion bags during robotic compounding was nearly nine times lower for cyclophosphamide (10.62 ng/cm2 vs 90.43 ng/cm2), two times lower for fluorouracil (3.47 vs 7.52 ng/cm2), and more than 23 times lower for gemcitabine (2.61 ng/cm2 vs 62.28 ng/cm2). Conclusions The external contamination occurred extensively on some hazardous drug vials that commonly used in Chinese hospitals. Comparison analysis for both compounding procedures revealed that robotic compounding can remarkably reduce environmental contamination.


2019 ◽  
Vol 76 (9) ◽  
pp. 591-598 ◽  
Author(s):  
Stephanie A Salch ◽  
William C Zamboni ◽  
Beth A Zamboni ◽  
Stephen F Eckel

2016 ◽  
Vol 24 (2) ◽  
pp. 91-97 ◽  
Author(s):  
Kimberly A Redic ◽  
Kayleen Fang ◽  
Catherine Christen ◽  
Bruce W Chaffee

Purpose This study was conducted to determine whether there is contamination on exterior drug packaging using shipping totes from the distributor and carousel storage bins as surrogate markers of external packaging contamination. Methods A two-part study was conducted to measure the presence of 5-fluorouracil, ifosfamide, cyclophosphamide, docetaxel and paclitaxel using surrogate markers for external drug packaging. In Part I, 10 drug distributor shipping totes designated for transport of hazardous drugs provided a snapshot view of contamination from regular use and transit in and out of the pharmacy. An additional two totes designated for transport of non-hazardous drugs served as controls. In Part II, old carousel storage bins (i.e. those in use pre-study) were wiped for snapshot view of hazardous drug contamination on storage bins. New carousel storage bins were then put into use for storage of the five tested drugs and used for routine storage and inventory maintenance activities. Carousel bins were wiped at time intervals 0, 8, 16 and 52 weeks to measure surface contamination. Results Two of the 10 hazardous shipping totes were contaminated. Three of the five-old carousel bins were contaminated with cyclophosphamide. One of the old carousel bins was also contaminated with ifosfamide. There were no detectable levels of hazardous drugs on any of the new storage bins at time 0, 8 or 16 weeks. However, at the Week 52, there was a detectable level of 5-FU present in the 5-FU carousel bin. Conclusions Contamination of the surrogate markers suggests that external packaging for hazardous drugs is contaminated, either during the manufacturing process or during routine chain of custody activities. These results demonstrate that occupational exposure may occur due to contamination from shipping totes and storage bins, and that handling practices including use of personal protective equipment is warranted.


2016 ◽  
Vol 23 (2) ◽  
pp. 103-115 ◽  
Author(s):  
Joshua Cox ◽  
Vonni Speed ◽  
Sara O’Neal ◽  
Terry Hasselwander ◽  
Candice Sherwood ◽  
...  

Background Even while following best practices, surface exposures of hazardous drugs (HDs) are high and numerous. Thus, it is important to develop new products to reduce the surface contamination of HDs. Hazardous Drug Clean (HDClean™) was developed to decontaminate and remove HDs from various types of surfaces and overcome the problems associated with other cleaning products. Methods HDClean was evaluated to remove mock surface exposures of HDs (docetaxel, paclitaxel, ifosfamide, cyclophosphamide, 5-FU, and cisplatin) from various types of surfaces. In two separate cancer centers, studies were performed to evaluate HDClean in reducing surface contamination of HDs in the pharmacy departments where no closed system transfer device (CSTD) was used. In a third cancer center, studies were performed comparing the effectiveness of a CSTD + Surface Safe compared with CSTD + HDClean to remove HDs. Results HDClean was able to completely remove mock exposures of a wide range of HDs from various surfaces (4 and 8 sq ft areas). Daily use of HDClean was equal to or more effective in reducing surface contamination of HDs in two pharmacies compared with a CSTD. HDClean was significantly more effective in removing HDs, especially cisplatin, compared with Surface Safe and does not have the problems associated with decontamination solutions that contain sodium hypochlorite. Conclusion These studies support HDClean as an effective decontaminating product, that HDClean is more effective than Surface Safe in removing HDs and is equal to or more effective than CSTD in controlling HD surface exposures.


Author(s):  
Christel Roland ◽  
Johann-François Ouellette-Frève ◽  
Caroline Plante ◽  
Jean-François Bussières

AbstractObjective:The aim of this paper is to review the surface contamination of three hazardous drugs within a teaching hospital and comment the different strategies put in place over the years in the context of these multicenter studies.Background:Many cross-sectional studies have been published about surface contamination with hazardous drugs in healthcare settings.Methods:This is a descriptive retrospective and longitudinal study. The study was conducted in a 500-bed mother-child university health center in Quebec, Canada.Results:A total of 72 samples (e. g. 36 in the pharmacy and 36 in outpatient care area) were obtained between 2010 and 2016 for a total of 216 analyses (three drugs/samples tested). The proportion of positive samples was 50 % (36/72) for cyclophosphamide, 32 % (23/72) for ifosfamide and 19 % (14/72) for methotrexate. The cyclophosphamide concentrations measured varied from undetectable to 400 pg/cmConclusion:This study shows a longitudinal perspective of the surface contamination of hazardous drugs in a teaching mother-child hospital. Every hospital should review its annual scorecard of contamination with a longitudinal perspective to minimize drug contamination. It is possible to contain surface contamination with hazardous drugs with different strategies.


Author(s):  
Thomas H. Connor ◽  
Jerome P. Smith

Abstract: At the present time, the method of choice to determine surface contamination of the workplace with antineoplastic and other hazardous drugs is surface wipe sampling and subsequent sample analysis with various analytical techniques. The purpose of this article is to review current methodology for determining the level of surface contamination with hazardous drugs in healthcare settings and to discuss recent advances in this area. In addition it will provide some guidance for conducting surface wipe sampling and sample analysis for these drugs in healthcare settings.: Published studies on the use of wipe sampling to measure hazardous chemicals, including antineoplastic drugs on surfaces were reviewed. These studies include the use of well-documented chromatographic techniques for sample analysis in addition to newly evolving technology that provides rapid analysis of specific antineoplastic drugs.: Methodology for the analysis of surface wipe samples for hazardous drugs are reviewed, including the purposes, technical factors, sampling strategy, materials required, and limitations. The use of lateral flow immunoassay (LFIA) and fluorescence covalent microbead immunosorbent assay (FCMIA) for surface wipe sample evaluation is also discussed.: Current recommendations are that all healthcare settings where antineoplastic and other hazardous drugs are handled include surface wipe sampling as part of a comprehensive hazardous drug-safe handling program. Surface wipe sampling may be used as a method to characterize potential occupational dermal exposure risk and to evaluate the effectiveness of implemented controls and the overall safety program. New technology, although currently limited in scope, may make wipe sampling for hazardous drugs more routine, less costly, and provide a shorter response time than classical analytical techniques now in use.


2020 ◽  
pp. 107815522095186
Author(s):  
Naiara Telleria ◽  
Nerea García ◽  
Jaione Grisaleña ◽  
Naiara Algaba ◽  
Eider Bergareche ◽  
...  

Introduction Low surface contamination levels of hazardous drugs in compounding areas can be used as indicators of exposure and efficacy of cleaning procedures. We report the efficacy results of the KIRO® Oncology self-cleaning automated compounding system for decontamination of cytotoxic drugs, assessed in an oncology health center using a sanitizing method and an alkaline method. Methods The study was conducted for six-days over a three-week period. A mixture with known levels of 5-fluorouracil, ifosfamide, cyclophosphamide, gemcitabine, etoposide, methotrexate, paclitaxel, docetaxel and carboplatin was added to the KIRO® Oncology’s compounding area surface before each self-cleaning method was used. Contamination levels were determined, with a surface wipe sampling kit, at the end of the self-cleaning process. Results Background surface contamination for quantified levels of cytotoxic drugs during routine use of KIRO® Oncology was below limit of quantification (<LOQ) for all drugs, except for carboplatin, which has a very low LOQ (0.2 ng/sample). The quantified drug levels detected on surface wipe samples after self-cleaning using both methods in the KIRO® Oncology’s compounding area surface sections were all <LOQ when spiking with 1 ng/cm2 (ten times the ‘safe’ reference value), except for carboplatin (alkaline method only), although its levels were still below the ‘safe’ reference value (0.1 ng/cm2). For surface contamination levels when spiking with 100 ng/cm2, both self-cleaning methods had decontamination efficacies >99.8% for all cytotoxic drugs analyzed. Conclusion This study provides evidence on the efficacy of the KIRO® Oncology automatic self-cleaning system for surface area decontamination during the preparation of cytotoxic drugs.


2002 ◽  
Author(s):  
M. Hoover ◽  
M. McCawley ◽  
D. Yereb ◽  
S. Tinkle ◽  
S. Beaton ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document