Two-dimensional model for the combined bending, stretching and shearing of shells: A general approach and application to laminated cylindrical shells derived from three-dimensional elasticity

2013 ◽  
Vol 19 (5) ◽  
pp. 491-501 ◽  
Author(s):  
Erick Pruchnicki
2013 ◽  
Vol 727 ◽  
pp. 236-255 ◽  
Author(s):  
D. Vigolo ◽  
I. M. Griffiths ◽  
S. Radl ◽  
H. A. Stone

AbstractUnderstanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar–turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow.


2001 ◽  
Author(s):  
Dumitru Caruntu ◽  
Mohamed Samir Hefzy

Abstract Most of the anatomical mathematical models that have been developed to study the human knee are either for the tibio-femoral joint (TFJ) or patello-femoral joint (PFJ). Also, most of these models are static or quasistatic, and therefore do not predict the effects of dynamic inertial loads, which occur in many locomotor activities. The only dynamic anatomical model that includes both joints is a two-dimensional model by Tumer and Engin [1]. The model by Abdel-Rahman and Hefzy [2] is the only three dimensional dynamic model for the knee joint available in the literature; yet, it includes only the TFJ and allows only for rigid contact.


2019 ◽  
Vol 97 ◽  
pp. 05030 ◽  
Author(s):  
Anatoly Krutov ◽  
Dilshod Bazarov ◽  
Begzod Norkulov ◽  
Bakhtiyar Obidov ◽  
Bobur Nazarov

The purpose of the article is to develop the required and sufficient conditions under which numerical methods can be used for engineering calculations and for scientific research of hydrodynamic processes in solving practical problems related to predicting the spread of pollutants in water bodies and streams. The conducted studies consisted in comparing the results of laboratory experiments and mathematical modelling, in particular the distribution of heat in a stream with different temperature in water layers was studied. To check the adequacy of the proposed numerical models, calculations were performed and comparisons were made with the results of experimental data. The obtained results allowed to determine the boundaries of the qualitative difference in the flow behaviour for different numbers of Froude and Reynolds. The accuracy of the method was also studied. A number of additional requirements for numerical models were proposed in addition to approcsimation and stability, such as requirements of conservativeness (divergence), existence of trivial solutions on grids, possibility to calculate highly unsteady, quasi-stable, pulsating and stationary flows, requirement of invariance of linearized equations, as well as the requirement of a one-dimensional scheme to be a consequence of a two-dimensional scheme. Distribution of velocities of wind currents using a three-dimensional and two-dimensional model was studied for a real object. A shallow-water bay of the Aral Sea was chosen as the object for the research. Comparison of the calculation results for both models showed that the flow velocity fields, as well as the distribution of pollutants in shallow waters, can be performed using a two-dimensional model.


1995 ◽  
Vol 11 (4) ◽  
pp. 371-394 ◽  
Author(s):  
Russell J. Best ◽  
Roger M. Bartlett ◽  
Richard A. Sawyer

This paper reports a study of the optimal release of men's and women's new and old rule javelins involving modeling, simulation, optimization (including sensitivity analysis), and simulation evaluation. Because of the lack of repro-ducibility in earlier results of two-dimensional flight simulation research, the paper presents a continuation of the two-dimensional model used previously. As expected, each javelin was found to have a different optimal release for a given individual, and the optimal release varied with the thrower's nominal release speed. A limited degree of simulation evaluation was achieved by comparison of the model and simulation results with measured throws. Within the constraints of measurement error, this tended to support both the adequacy of the two-dimensional model and the results of the simulations for such high standard throws. However, further experimental studies to quantify the angle of yaw (sideslip) in measured wind conditions are recommended to assess any changes needed to the two-dimensional model of javelin throwing and to determine the advisability of including this three-dimensional aspect of javelin release in future simulations.


Sign in / Sign up

Export Citation Format

Share Document