Alterations in the Ventral Attention Network During the Stop-Signal Task in Children With ADHD: An Event-Related Potential Source Imaging Study

2015 ◽  
Vol 22 (7) ◽  
pp. 639-650 ◽  
Author(s):  
Tieme W. P. Janssen ◽  
Dirk J. Heslenfeld ◽  
Rosa van Mourik ◽  
Katleen Geladé ◽  
Athanasios Maras ◽  
...  

Objective: Deficits in response inhibition figure prominently in models of ADHD; however, attentional deficiencies may better explain previous findings of impaired response inhibition in ADHD. We tested this hypothesis at the neurophysiological level. Method: Dense array ERPs (event-related potentials) were obtained for 46 children with ADHD and 51 controls using the stop-signal task (SST). Early and late components were compared between groups. N2 and P3 components were localized with LAURA distributed linear inverse solution. Results: A success-related N1 modulation was only apparent in the ADHD group. N2 and P3 amplitudes were reduced in ADHD. During the successful inhibition N2, the ADHD group showed reduced activation in right inferior frontal gyrus (rIFG), supplementary motor area (SMA), and right temporoparietal junction (rTPJ), and during failed inhibition in the rIFG. During the successful inhibition P3, reduced activation was found in anterior cingulate cortex (ACC) and SMA. Conclusion: Impairments in the ventral attention network contribute to the psychopathology of ADHD and challenge the dominant view that ADHD is underpinned by impaired inhibitory control.

Author(s):  
Lin Chi ◽  
Chiao-Ling Hung ◽  
Chi-Yen Lin ◽  
Tai-Fen Song ◽  
Chien-Heng Chu ◽  
...  

Obesity and cardiorespiratory fitness exhibit negative and positive impacts, respectively, on executive function. Nevertheless, the combined effects of these two factors on executive function remain unclear. This study investigated the combined effects of obesity and cardiorespiratory fitness on response inhibition of executive function from both behavioral and neuroelectric perspectives. Ninety-six young adults aged between 18 and 25 years were recruited and assigned into four groups: the high cardiorespiratory fitness with normal weight (NH), high cardiorespiratory fitness with obesity (OH), low cardiorespiratory fitness with normal weight (NL), and low cardiorespiratory fitness with obesity (OL) groups. The stop-signal task and its induced P3 component of event-related potentials was utilized to index response inhibition. The participants with higher cardiorespiratory fitness (i.e., the NH and OH groups) demonstrated better behavioral performance (i.e., shorter response times and higher accuracy levels), as well as shorter stop-signal response times and larger P3 amplitudes than their counterparts with low cardiorespiratory fitness (i.e., the NL and OL groups). The study provides first-hand evidence of the substantial effects of cardiorespiratory fitness on the response inhibition, including evidence that the detrimental effects of obesity might be overcome by high cardiorespiratory fitness.


2012 ◽  
Vol 85 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Magdalena Senderecka ◽  
Anna Grabowska ◽  
Jakub Szewczyk ◽  
Krzysztof Gerc ◽  
Roman Chmylak

2021 ◽  
Vol 15 ◽  
Author(s):  
Meng-Tien Hsieh ◽  
Hsinjie Lu ◽  
Chia-I Lin ◽  
Tzu-Han Sun ◽  
Yi-Ru Chen ◽  
...  

The present study aimed to use event-related potentials with the stop-signal task to investigate the effects of trait anxiety on inhibitory control, error monitoring, and post-error adjustments. The stop-signal reaction time (SSRT) was used to evaluate the behavioral competence of inhibitory control. Electrophysiological signals of error-related negativity (ERN) and error positivity (Pe) were used to study error perception and error awareness, respectively. Post-error slowing (PES) was applied to examine the behavioral adjustments after making errors. The results showed that SSRT and PES did not differ significantly between individuals with high trait anxiety (HTA) and those with low trait anxiety (LTA). However, individuals with HTA demonstrated reduced ERN amplitudes and prolonged Pe latencies than those with LTA. Prolonged Pe latencies were also significantly associated with poorer post-error adjustments. In conclusion, HTA led to reduced cortical responses to error monitoring. Furthermore, inefficient conscious awareness of errors might lead to maladaptive post-error adjustments.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs.Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition.Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs.Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


2012 ◽  
Vol 107 (10) ◽  
pp. 2794-2807 ◽  
Author(s):  
Robert M. G. Reinhart ◽  
Nancy B. Carlisle ◽  
Min-Suk Kang ◽  
Geoffrey F. Woodman

Although previous research with human and nonhuman primates has examined the neural correlates of performance monitoring, discrepancies in methodology have limited our ability to make cross-species generalizations. One major obstacle arises from the use of different behavioral responses and tasks across different primate species. Specifically, it is unknown whether performance-monitoring mechanisms rely on different neural circuitry in tasks requiring oculomotor vs. skeletomotor responses. Here, we show that the human error-related negativity (ERN) elicited by a saccadic eye-movement response relative to a manual response differs in several critical ways. The human saccadic ERN exhibits a prolonged duration, a broader frontomedial voltage distribution, and different neural source estimates than the manual ERN in exactly the same stop-signal task. The human saccadic error positivity (Pe) exhibited a frontomedial voltage distribution with estimated electrical sources in supplementary motor area and rostral anterior cingulate cortex for saccadic responses, whereas the manual Pe showed a posterior scalp distribution and potential origins in the superior parietal lobule. These findings constrain models of the cognitive mechanisms indexed by the ERN/Pe complex. Moreover, by paralleling work with nonhuman primates performing the same saccadic stop-signal task ( Godlove et al. 2011 ), we demonstrate a cross-species homology of error event-related potentials (ERPs) and lay the groundwork for definitively localizing the neural sources of performance-monitoring ERPs.


2020 ◽  
Author(s):  
Guoliang Chen ◽  
Yansong Li ◽  
Zhao Dong ◽  
Rongfei Wang ◽  
Dengfa Zhao ◽  
...  

Abstract Background: Migraine is characterized by a hypersensitivity to environmental stimulation which climaxes during headache attacks but persists during attack-free period. Despite ongoing debates about the nature of the mechanisms giving rise to this abnormality, the presence of deficient inhibitory cortical processes has been proposed to be one possible mechanism underlying its pathogenesis. Empirical evidence supporting this claim is mainly based on previous accounts showing functional cortical disexcitability in the sensory domain. Considering that a general inhibitory control process can play an important role across early to later stage of information processing, this may indicate the important role other dimensions of inhibitory control can play in migraine disability. The present study examined the pathophysiological features of inhibitory control that takes place during suppression of prepotent responses in migraineurs. Methods: Twenty-two patients with migraine without aura (mean age = 30.86 ± 5.69 years; 19 females) during the interictal period and 25 healthy controls (mean age = 30.24 ± 3.52 years; 18 females) were recruited. We used a stop signal task in combination with event-related potentials (ERPs) to examine participants’ neural activity supporting response inhibition. Results: Behaviorally, migraineurs exhibited prolonged stop signal reaction times relative to healthy controls. At the neural level, the amplitude of the stop-N2 over fronto-central, central and centro-parietal scalp regions, a component of the ERPs related to conflict monitoring during early, non-motoric stages of inhibition, was significantly increased in migraineurs. Meanwhile, the amplitude of the stop-P3 over central and centro-parietal scalp regions, a component of the ERPs reflecting late-stage inhibition of the motor system and cognitive evaluation of motor inhibition, was also significantly increased in migraineurs. Ultimately, our time-frequency analysis further revealed increased delta activity in migraineurs. Conclusions: Consistent with the theory that alterations in cognitive cortical processes are a key signature of migraine, our findings revealed an abnormal state of suppressing prepotent responses in migraineurs, which can be attributed to cortical disexcitability of the pre-frontal executive network and centro-parietal sensorimotor network. These novel findings extend to show the existence of dysfunctional inhibition control that occurs during suppression of prepotent responses in migraneurs.nctional inhibition control that occurs during suppression of prepotent responses in migraneurs.


Author(s):  
Graciela C. Alatorre-Cruz ◽  
Heather Downs ◽  
Darcy Hagood ◽  
Seth T. Sorensen ◽  
D. Keith Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document