scholarly journals A Method with Flexible and Balanced Control of False Negatives and False Positives for Hit Selection in RNA Interference High-Throughput Screening Assays: A Statistical Terminology

2008 ◽  
Vol 13 (4) ◽  
pp. 309-311 ◽  
Author(s):  
Edna Schechtman

Zhang suggests a new method that is flexible and controls the balance between false negatives and false positives for hit selection in RNA high-throughput screening assays. The author shows that the same decision rules and balances can be expressed by familiar statistical terms such as type I error and power and hence connects the new method to known statistical tools. (Journal of Biomolecular Screening 2008:309-311)

2006 ◽  
Vol 3 (2) ◽  
pp. 115-124 ◽  
Author(s):  
Claudio Dalvit ◽  
Dannica Caronni ◽  
Nicola Mongelli ◽  
Marina Veronesi ◽  
Anna Vulpetti

2015 ◽  
Vol 17 (4) ◽  
pp. 239-246 ◽  
Author(s):  
Aileen Y. Alontaga ◽  
Yifei Li ◽  
Chih-Hong Chen ◽  
Chen-Ting Ma ◽  
Siobhan Malany ◽  
...  

Biopolymers ◽  
2014 ◽  
Vol 102 (5) ◽  
pp. 396-406 ◽  
Author(s):  
Franck Madoux ◽  
Claudia Tredup ◽  
Timothy P. Spicer ◽  
Louis Scampavia ◽  
Peter S. Chase ◽  
...  

2016 ◽  
Vol 113 (52) ◽  
pp. 14915-14920 ◽  
Author(s):  
Yih Yang Chen ◽  
Pamuditha N. Silva ◽  
Abdullah Muhammad Syed ◽  
Shrey Sindhwani ◽  
Jonathan V. Rocheleau ◽  
...  

On-chip imaging of intact three-dimensional tissues within microfluidic devices is fundamentally hindered by intratissue optical scattering, which impedes their use as tissue models for high-throughput screening assays. Here, we engineered a microfluidic system that preserves and converts tissues into optically transparent structures in less than 1 d, which is 20× faster than current passive clearing approaches. Accelerated clearing was achieved because the microfluidic system enhanced the exchange of interstitial fluids by 567-fold, which increased the rate of removal of optically scattering lipid molecules from the cross-linked tissue. Our enhanced clearing process allowed us to fluorescently image and map the segregation and compartmentalization of different cells during the formation of tumor spheroids, and to track the degradation of vasculature over time within extracted murine pancreatic islets in static culture, which may have implications on the efficacy of beta-cell transplantation treatments for type 1 diabetes. We further developed an image analysis algorithm that automates the analysis of the vasculature connectivity, volume, and cellular spatial distribution of the intact tissue. Our technique allows whole tissue analysis in microfluidic systems, and has implications in the development of organ-on-a-chip systems, high-throughput drug screening devices, and in regenerative medicine.


2018 ◽  
Vol 232 ◽  
pp. 04037
Author(s):  
Miroslav Popovic ◽  
Branislav Kordic ◽  
Marko Popovic ◽  
Ilija Basicevic

STM transaction schedulers were introduced to improve system performance. However, designing online transaction scheduling algorithms is challenging because at the same time they should: (i) introduce minimal scheduling overhead, (ii) minimize the resulting makespan, and (iii) minimize contention in the resulting schedule. In our previous work we developed the online transaction scheduler architecture and the four scheduling algorithms, named RR, ETLB, AC, and AAC (listed in increasing order of their quality), for scheduling transactions on the Python STM. Both AC and AAC use Bernstein conditions to check for pairwise data races between transactions, at the cost of time complexity that is proportional to the product of the sizes of transaction’s read and write sets, which may be significant. In this paper we propose a method for estimating existence of pairwise transaction conflicts whose time complexity is Θ(1). We validate this method by analysing the resulting transaction schedules for the three benchmark workloads, named RDW, CFW, and WDW. The result of this analysis is positive and encouraging – AAC using the new method produces the same result as when using Bernstein conditions. The limitation of the new method is that it may have false reports, both false negatives and false positives.


Sign in / Sign up

Export Citation Format

Share Document