scholarly journals Process Validation and Screen Reproducibility in High-Throughput Screening

2008 ◽  
Vol 14 (1) ◽  
pp. 66-76 ◽  
Author(s):  
Isabel Coma ◽  
Liz Clark ◽  
Emilio Diez ◽  
Gavin Harper ◽  
Jesus Herranz ◽  
...  

The use of large-scale compound screening has become a key component of drug discovery projects in both the pharmaceutical and the biotechnological industries. More recently, these activities have also been embraced by the academic community as a major tool for chemical genomic activities. High-throughput screening (HTS) activities constitute a major step in the initial drug discovery efforts and involve the use of large quantities of biological reagents, hundreds of thousands to millions of compounds, and the utilization of expensive equipment. All these factors make it very important to evaluate in advance of the HTS campaign any potential issues related to reproducibility of the experimentation and the quality of the results obtained at the end of these very costly activities. In this article, the authors describe how GlaxoSmithKline (GSK) has addressed the need of a true validation of the HTS process before embarking in full HTS campaigns. They present 2 different aspects of the so-called validation process: (1) optimization of the HTS workflow and its validation as a quality process and (2) the statistical evaluation of the HTS, focusing on the reproducibility of results and the ability to distinguish active from nonactive compounds in a vast collection of samples. The authors describe a variety of reproducibility indexes that are either innovative or have been adapted from generic medical diagnostic screening strategies. In addition, they exemplify how these validation tools have been implemented in a number of case studies at GSK. ( Journal of Biomolecular Screening 2009:66-76)

2012 ◽  
Vol 17 (4) ◽  
pp. 519-529 ◽  
Author(s):  
Michael Prummer

Following the success of small-molecule high-throughput screening (HTS) in drug discovery, other large-scale screening techniques are currently revolutionizing the biological sciences. Powerful new statistical tools have been developed to analyze the vast amounts of data in DNA chip studies, but have not yet found their way into compound screening. In HTS, characterization of single-point hit lists is often done only in retrospect after the results of confirmation experiments are available. However, for prioritization, for optimal use of resources, for quality control, and for comparison of screens it would be extremely valuable to predict the rates of false positives and false negatives directly from the primary screening results. Making full use of the available information about compounds and controls contained in HTS results and replicated pilot runs, the Z score and from it the p value can be estimated for each measurement. Based on this consideration, we have applied the concept of p-value distribution analysis (PVDA), which was originally developed for gene expression studies, to HTS data. PVDA allowed prediction of all relevant error rates as well as the rate of true inactives, and excellent agreement with confirmation experiments was found.


2016 ◽  
Vol 21 (9) ◽  
pp. 931-941 ◽  
Author(s):  
Karsten Boehnke ◽  
Philip W. Iversen ◽  
Dirk Schumacher ◽  
María José Lallena ◽  
Rubén Haro ◽  
...  

The application of patient-derived three-dimensional culture systems as disease-specific drug sensitivity models has enormous potential to connect compound screening and clinical trials. However, the implementation of complex cell-based assay systems in drug discovery requires reliable and robust screening platforms. Here we describe the establishment of an automated platform in 384-well format for three-dimensional organoid cultures derived from colon cancer patients. Single cells were embedded in an extracellular matrix by an automated workflow and subsequently self-organized into organoid structures within 4 days of culture before being exposed to compound treatment. We performed validation of assay robustness and reproducibility via plate uniformity and replicate-experiment studies. After assay optimization, the patient-derived organoid platform passed all relevant validation criteria. In addition, we introduced a streamlined plate uniformity study to evaluate patient-derived colon cancer samples from different donors. Our results demonstrate the feasibility of using patient-derived tumor samples for high-throughput assays and their integration as disease-specific models in drug discovery.


2014 ◽  
Vol 20 (2) ◽  
pp. 190-201 ◽  
Author(s):  
Svenja Luense ◽  
Philip Denner ◽  
Amaury Fernández-Montalván ◽  
Ingo Hartung ◽  
Manfred Husemann ◽  
...  

EZH2 inhibition can decrease global histone H3 lysine 27 trimethylation (H3K27me3) and thereby reactivates silenced tumor suppressor genes. Inhibition of EZH2 is regarded as an option for therapeutic cancer intervention. To identify novel small-molecule (SMOL) inhibitors of EZH2 in drug discovery, trustworthy cellular assays amenable for phenotypic high-throughput screening (HTS) are crucial. We describe a reliable approach that quantifies changes in global levels of histone modification marks using high-content analysis (HCA). The approach was validated in different cell lines by using small interfering RNA and SMOL inhibitors. By automation and miniaturization from a 384-well to 1536-well plate, we demonstrated its utility in conducting phenotypic HTS campaigns and assessing structure-activity relationships (SAR). This assay enables screening of SMOL EZH2 inhibitors and can advance the mechanistic understanding of H3K27me3 suppression, which is crucial with regard to epigenetic therapy. We observed that a decrease in global H3K27me3, induced by EZH2 inhibition, comprises two distinct mechanisms: (1) inhibition of de novo DNA methylation and (II) inhibition of dynamic, replication-independent H3K27me3 turnover. This report describes an HCA assay for primary HTS to identify, profile, and optimize cellular active SMOL inhibitors targeting histone methyltransferases, which could benefit epigenetic drug discovery.


2020 ◽  
Vol 12 (8) ◽  
pp. 630-643 ◽  
Author(s):  
Yuhong Du ◽  
Xingnan Li ◽  
Qiankun Niu ◽  
Xiulei Mo ◽  
Min Qui ◽  
...  

Abstract The recent advent of robust methods to grow human tissues as 3D organoids allows us to recapitulate the 3D architecture of tumors in an in vitro setting and offers a new orthogonal approach for drug discovery. However, organoid culturing with extracellular matrix to support 3D architecture has been challenging for high-throughput screening (HTS)-based drug discovery due to technical difficulties. Using genetically engineered human colon organoids as a model system, here we report our effort to miniaturize such 3D organoid culture with extracellular matrix support in high-density plates to enable HTS. We first established organoid culturing in a 384-well plate format and validated its application in a cell viability HTS assay by screening a 2036-compound library. We further miniaturized the 3D organoid culturing in a 1536-well ultra-HTS format and demonstrated its robust performance for large-scale primary compound screening. Our miniaturized organoid culturing method may be adapted to other types of organoids. By leveraging the power of 3D organoid culture in a high-density plate format, we provide a physiologically relevant screening platform to model tumors to accelerate organoid-based research and drug discovery.


1999 ◽  
Vol 4 (2) ◽  
pp. 61-65 ◽  
Author(s):  
Willie Harrison

Economic, environmental, and political issues arising in the last two decades have changed agricultural practice worldwide. While the agrochemical market has diminished, time and cost of R & D and regulatory restrictions have increased, thereby reducing profit margins dramatically. This has led to a change of strategy from screening whole organisms to screening diverse compounds, with high-throughput screening processes similar to those used in drug discovery. For large-scale high-throughput screening to efficiently facilitate storage, retrieval, preparation and tracking of compounds, the sample management process needs to be highly automated. The introduction of modern automated technology will help to address the problems faced by the agrochemical industry.


2021 ◽  
pp. 247255522110281
Author(s):  
Roman P. Simon ◽  
Tim T. Häbe ◽  
Robert Ries ◽  
Martin Winter ◽  
Yuting Wang ◽  
...  

Acoustic droplet ejection (ADE)–open port interface (OPI)–mass spectrometry (MS) has recently been introduced as a versatile analytical method that combines fast and contactless acoustic sampling with sensitive and accurate electrospray ionization (ESI)–MS-based analyte detection. The potential of the technology to provide label-free measurements in subsecond analytical cycle times makes it an attractive option for high-throughput screening (HTS). Here, we report the first implementation of ADE-OPI-MS in a fully automated HTS environment, based on the example of a biochemical assay aiming at the identification of small-molecule inhibitors of the cyclic guanosine monophosphate–adenosine monophosphate (GMP-AMP) synthase (cGAS). First, we describe the optimization of the method to enable sensitive and accurate determination of enzyme activity and inhibition in miniaturized 1536-well microtiter plate format. Then we show both results from a validation single-concentration screen using a test set of 5500 compounds, and the subsequent concentration–response testing of selected hits in direct comparison with a previously established matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) readout. Finally, we present the development of an in-line OPI cleaning procedure aiming to match the instrument robustness required for large-scale HTS campaigns. Overall, this work points to critical method development parameters and provides guidance for the establishment of integrated ADE-OPI-MS as HTS-compatible technology for early drug discovery.


2003 ◽  
Vol 8 (6) ◽  
pp. 615-619 ◽  
Author(s):  
Ross L. Stein

To identify small-molecule modulators of biologic systems, academic scientists are beginning to use high-throughput screening (HTS) approaches that have traditionally been used only in industry. The HTS laboratories that are being established in universities, while differing in details of staffing, equipment, and size, have all been created to attain 1 or more of 3 principal goals: drug discovery, chemical genetics, or training. This article will examine the role that these activities play in 4 HTS laboratories that have been created within the academic community of Harvard Medical School and its affiliated institutions. First, the 3 activities will be defined with special attention paid to describing the impact they are having on how academic biologic science is conducted today. Next, the histories and operations of the 4 Harvard laboratories are reviewed. In the course of these summaries, emphasis is placed on understanding the motivational role that the 3 activities initially played in the creation of the 4 Harvard facilities and the roles that the activities continue to play in their day-to-day operations. Finally, several concerns are identified that must be attended to for the successful establishment and operation of an academic biologic science that has yet to be fully determined. HTS has the ability to provide the tools to test previously untestable hypotheses and can thereby allow the discovery of the unanticipated and the truly novel.


Sign in / Sign up

Export Citation Format

Share Document