scholarly journals Drug-Induced Liver Injury in Children: Clinical Observations, Animal Models, and Regulatory Status

2017 ◽  
Vol 36 (5) ◽  
pp. 365-379 ◽  
Author(s):  
Qiang Shi ◽  
Xi Yang ◽  
James J. Greenhaw ◽  
Alec Thomas Salminen ◽  
Gary M. Russotti ◽  
...  

Drug-induced liver injury in children (cDILI) accounts for about 1% of all reported adverse drug reactions throughout all age groups, less than 10% of all clinical DILI cases, and around 20% of all acute liver failure cases in children. The overall DILI susceptibility in children has been assumed to be lower than in adults. Nevertheless, controversial evidence is emerging about children’s sensitivity to DILI, with children’s relative susceptibility to DILI appearing to be highly drug-specific. The culprit drugs in cDILI are similar but not identical to DILI in adults (aDILI). This is demonstrated by recent findings that a drug frequently associated with aDILI (amoxicillin/clavulanate) was rarely associated with cDILI and that the drug basiliximab caused only cDILI but not aDILI. The fatality in reported cDILI studies ranged from 4% to 31%. According to the US Food and Drug Administration–approved drugs labels, valproic acid, dactinomycin, and ampicillin appear more likely to cause cDILI. In contrast, deferasirox, isoniazid, dantrolene, and levofloxacin appear more likely to cause aDILI. Animal models have been explored to mimic children’s increased susceptibility to valproic acid hepatotoxicity or decreased susceptibility to acetaminophen or halothane hepatotoxicity. However, for most drugs, animal models are not readily available, and the underlying mechanisms for the differential reactions to DILI between children and adults remain highly hypothetical. Diagnosis tools for cDILI are not yet available. A critical need exists to fill the knowledge gaps in cDILI. This review article provides an overview of cDILI and specific drugs associated with cDILI.

2020 ◽  
Vol 2 ◽  
Author(s):  
Christopher R. Cox ◽  
Stephen Lynch ◽  
Christopher Goldring ◽  
Parveen Sharma

Drug-induced liver injury (DILI) remains a leading cause for the withdrawal of approved drugs. This has significant financial implications for pharmaceutical companies, places increasing strain on global health services, and causes harm to patients. For these reasons, it is essential that in-vitro liver models are capable of detecting DILI-positive compounds and their underlying mechanisms, prior to their approval and administration to patients or volunteers in clinical trials. Metabolism-dependent DILI is an important mechanism of drug-induced toxicity, which often involves the CYP450 family of enzymes, and is associated with the production of a chemically reactive metabolite and/or inefficient removal and accumulation of potentially toxic compounds. Unfortunately, many of the traditional in-vitro liver models fall short of their in-vivo counterparts, failing to recapitulate the mature hepatocyte phenotype, becoming metabolically incompetent, and lacking the longevity to investigate and detect metabolism-dependent DILI and those associated with chronic and repeat dosing regimens. Nevertheless, evidence is gathering to indicate that growing cells in 3D formats can increase the complexity of these models, promoting a more mature-hepatocyte phenotype and increasing their longevity, in vitro. This review will discuss the use of 3D in vitro models, namely spheroids, organoids, and perfusion-based systems to establish suitable liver models to investigate metabolism-dependent DILI.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yingying Pan ◽  
Mingzhu Cao ◽  
Danming You ◽  
Genggeng Qin ◽  
Zhi Liu

Drug-induced liver injury (DILI) is a major concern in clinical studies as well as in postmarketing surveillance. It is necessary to establish an animal model of DILI for thorough investigation of mechanisms of DILI and searching for protective medications. This article reviews the current status and future perspective on establishment of DILI models based on different hepatotoxic drugs, as well as the underlying mechanisms of liver function damage induced by specific medicine. Therefore, information from this article can help researchers make a suitable selection of animal models for further study.


2017 ◽  
Vol 03 (01) ◽  
Author(s):  
Omkolsoum M Alhaddad ◽  
Maha M Elsabaawy ◽  
Mohammed S Essa ◽  
Ahmed Shaaban ◽  
Omar Elsaharaawy ◽  
...  

2018 ◽  
Vol 7 (3) ◽  
pp. 358-370 ◽  
Author(s):  
Rosa Chan ◽  
Leslie Z. Benet

Drug-induced liver injury (DILI) is a major safety concern; it occurs frequently; it is idiosyncratic; it cannot be adequately predicted; and a multitude of underlying mechanisms has been postulated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Xinmei Li ◽  
Heng Zhang ◽  
Lin Xu ◽  
Yuan Jin ◽  
Jiao Luo ◽  
...  

Isoniazid (INH), an effective first-line drug for tuberculosis treatment, has been reported to be associated with hepatotoxicity for decades, but the underlying mechanisms are poorly understood. N-acetyltransferase 2 (NAT2) is a Phase II enzyme that specifically catalyzes the acetylation of INH, and NAT2 expression/activity play pivotal roles in INH metabolism, drug efficacy, and toxicity. In this study, we systematically investigated the regulatory roles of microRNA (miRNA) in NAT2 expression and INH-induced liver injury via a series of in silico, in vitro, and in vivo analyses. Four mature miRNAs, including hsa-miR-15a-3p, hsa-miR-628-5p, hsa-miR-1262, and hsa-miR-3132, were predicted to target the NAT2 transcript, and a negative correlation was observed between hsa-miR-15a-3p and NAT2 transcripts in liver samples. Further experiments serially revealed that hsa-miR-15a-3p was able to interact with the 3′-untranslated region (UTR) of NAT2 directly, suppressed the endogenous NAT2 expression, and then inhibited INH-induced NAT2 overexpression as well as INH-induced liver injury, both in liver cells and mouse model. In summary, our results identified hsa-miR-15a-3p as a novel epigenetic factor modulating NAT2 expression and as a protective module against INH-induced liver injury, and provided new clues to elucidate the epigenetic regulatory mechanisms concerning drug-induced liver injury (DILI).


2021 ◽  
Vol 14 (4) ◽  
pp. e239488
Author(s):  
Melvin Qiyu Lee ◽  
Royale Chigozie ◽  
Irfan Khan ◽  
Gerard O'Mara

A 68-year-old patient presented with symptoms of a urinary tract infection. A deterioration in the patient’s liver function tests (LFTs) was noted 1 week following completion of a course of amoxicillin–clavunalate. This progressively worsened, reaching its peak by day 30. Our investigations excluded other possible causes for deranged LFTs and there was no improvement of same despite reduced dosing of potentially hepatotoxic medications.A trial of 30 mg/day prednisolone was commenced, resulting in an immediate and progressive improvement in LFTs to baseline over a period of 22 days and an improvement in constitutional symptoms such as tiredness and poor appetite. Drug-induced liver injury (DILI) is one of the common causes of acute hepatitis and a leading cause of acute liver failure in the US and Europe. Patterns of DILI can be generally divided into: (1) hepatocellular injury, (2) cholestatic injury and (3) mixed injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenhui Liu ◽  
Xiangchang Zeng ◽  
Yating Liu ◽  
Jinfeng Liu ◽  
Chaopeng Li ◽  
...  

Drug-induced liver injury (DILI) has become one of the major challenges of drug safety all over the word. So far, about 1,100 commonly used drugs including the medications used regularly, herbal and/or dietary supplements, have been reported to induce liver injury. Moreover, DILI is the main cause of the interruption of new drugs development and drugs withdrawn from the pharmaceutical market. Acute DILI may evolve into chronic DILI or even worse, commonly lead to life-threatening acute liver failure in Western countries. It is generally considered to have a close relationship to genetic factors, environmental risk factors, and host immunity, through the drug itself or its metabolites, leading to a series of cellular events, such as haptenization and immune response activation. Despite many researches on DILI, the specific biomarkers about it are not applicable to clinical diagnosis, which still relies on the exclusion of other causes of liver disease in clinical practice as before. Additionally, circumstantial evidence has suggested that DILI is mediated by the immune system. Here, we review the underlying mechanisms of the immune response to DILI and provide guidance for the future development of biomarkers for the early detection, prediction, and diagnosis of DILI.


Sign in / Sign up

Export Citation Format

Share Document