Deploying massive runs of evolutionary algorithms with ECJ and Hadoop: Reducing interest points required for face recognition

Author(s):  
Francisco Chávez ◽  
Francisco Fernández de Vega ◽  
Daniel Lanza ◽  
César Benavides ◽  
Juan Villegas ◽  
...  

In this paper we present a new strategy for deploying massive runs of evolutionary algorithms with the well-known Evolutionary Computation Library (ECJ) tool, which we combine with the MapReduce model so as to allow the deployment of computing intensive runs of evolutionary algorithms on big data infrastructures. Moreover, by addressing a hard real life problem, we show how the new strategy allows us to address problems that cannot be solved with more traditional approaches. Thus, this paper shows that by using the Hadoop framework ECJ users can, by means of a new parameter, choose where the run will be launched, whether in a Hadoop based infrastructure or in a desktop computer. Moreover, together with the performed tests we address the well-known face recognition problem with a new purpose: to allow a genetic algorithm to decide which are the more relevant interest points within the human face. Massive runs have allowed us to reduce the set from about 60 to just 20 points. In this way, recognition tasks based on the solution provided by the genetic algorithm will work significantly quicker in the future, given that just 20 points will be required. Therefore, two goals have been achieved: (a) to allow ECJ users to launch massive runs of evolutionary algorithms on big data infrastructures and also (b) to demonstrate the capabilities of the tool to successfully improve results regarding the problem of face recognition.

Author(s):  
Juan Villegas-Cortez ◽  
César Benavides-Alvarez ◽  
Carlos Avilés-Cruz ◽  
Graciela Román-Alonso ◽  
Francisco Fernández de Vega ◽  
...  

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shu-Bo Chen ◽  
Saima Rashid ◽  
Muhammad Aslam Noor ◽  
Zakia Hammouch ◽  
Yu-Ming Chu

Abstract Inequality theory provides a significant mechanism for managing symmetrical aspects in real-life circumstances. The renowned distinguishing feature of integral inequalities and fractional calculus has a solid possibility to regulate continuous issues with high proficiency. This manuscript contributes to a captivating association of fractional calculus, special functions and convex functions. The authors develop a novel approach for investigating a new class of convex functions which is known as an n-polynomial $\mathcal{P}$ P -convex function. Meanwhile, considering two identities via generalized fractional integrals, provide several generalizations of the Hermite–Hadamard and Ostrowski type inequalities by employing the better approaches of Hölder and power-mean inequalities. By this new strategy, using the concept of n-polynomial $\mathcal{P}$ P -convexity we can evaluate several other classes of n-polynomial harmonically convex, n-polynomial convex, classical harmonically convex and classical convex functions as particular cases. In order to investigate the efficiency and supremacy of the suggested scheme regarding the fractional calculus, special functions and n-polynomial $\mathcal{P}$ P -convexity, we present two applications for the modified Bessel function and $\mathfrak{q}$ q -digamma function. Finally, these outcomes can evaluate the possible symmetric roles of the criterion that express the real phenomena of the problem.


2016 ◽  
Vol 78 (8-2) ◽  
Author(s):  
Norma Alias ◽  
Nadia Nofri Yeni Suhari ◽  
Hafizah Farhah Saipan Saipol ◽  
Abdullah Aysh Dahawi ◽  
Masyitah Mohd Saidi ◽  
...  

This paper proposed the several real life applications for big data analytic using parallel computing software. Some parallel computing software under consideration are Parallel Virtual Machine, MATLAB Distributed Computing Server and Compute Unified Device Architecture to simulate the big data problems. The parallel computing is able to overcome the poor performance at the runtime, speedup and efficiency of programming in sequential computing. The mathematical models for the big data analytic are based on partial differential equations and obtained the large sparse matrices from discretization and development of the linear equation system. Iterative numerical schemes are used to solve the problems. Thus, the process of computational problems are summarized in parallel algorithm. Therefore, the parallel algorithm development is based on domain decomposition of problems and the architecture of difference parallel computing software. The parallel performance evaluations for distributed and shared memory architecture are investigated in terms of speedup, efficiency, effectiveness and temporal performance.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Jing Xiao ◽  
Jing-Jing Li ◽  
Xi-Xi Hong ◽  
Min-Mei Huang ◽  
Xiao-Min Hu ◽  
...  

As it is becoming extremely competitive in software industry, large software companies have to select their project portfolio to gain maximum return with limited resources under many constraints. Project portfolio optimization using multiobjective evolutionary algorithms is promising because they can provide solutions on the Pareto-optimal front that are difficult to be obtained by manual approaches. In this paper, we propose an improved MOEA/D (multiobjective evolutionary algorithm based on decomposition) based on reference distance (MOEA/D_RD) to solve the software project portfolio optimization problems with optimizing 2, 3, and 4 objectives. MOEA/D_RD replaces solutions based on reference distance during evolution process. Experimental comparison and analysis are performed among MOEA/D_RD and several state-of-the-art multiobjective evolutionary algorithms, that is, MOEA/D, nondominated sorting genetic algorithm II (NSGA2), and nondominated sorting genetic algorithm III (NSGA3). The results show that MOEA/D_RD and NSGA2 can solve the software project portfolio optimization problem more effectively. For 4-objective optimization problem, MOEA/D_RD is the most efficient algorithm compared with MOEA/D, NSGA2, and NSGA3 in terms of coverage, distribution, and stability of solutions.


2022 ◽  
Vol 14 (1) ◽  
pp. 0-0

Attendance management can become a tedious task for teachers if it is performed manually.. This problem can be solved with the help of an automatic attendance management system. But validation is one of the main issues in the system. Generally, biometrics are used in the smart automatic attendance system. Managing attendance with the help of face recognition is one of the biometric methods with better efficiency as compared to others. Smart Attendance with the help of instant face recognition is a real-life solution that helps in handling daily life activities and maintaining a student attendance system. Face recognition-based attendance system uses face biometrics which is based on high resolution monitor video and other technologies to recognize the face of the student. In project, the system will be able to find and recognize human faces fast and accurately with the help of images or videos that will be captured through a surveillance camera. It will convert the frames of the video into images so that our system can easily search that image in the attendance database.


Author(s):  
Haipeng Chen ◽  
Wenxing Fu ◽  
Yuze Feng ◽  
Jia Long ◽  
Kang Chen

In this article, we propose an efficient intelligent decision method for a bionic motion unmanned system to simulate the formation change during the hunting process of the wolves. Path planning is a burning research focus for the unmanned system to realize the formation change, and some traditional techniques are designed to solve it. The intelligent decision based on evolutionary algorithms is one of the famous path planning approaches. However, time consumption remains to be a problem in the intelligent decisions of the unmanned system. To solve the time-consuming problem, we simplify the multi-objective optimization as the single-objective optimization, which was regarded as a multiple traveling salesman problem in the traditional methods. Besides, we present the improved genetic algorithm instead of evolutionary algorithms to solve the intelligent decision problem. As the unmanned system’s intelligent decision is solved, the bionic motion control, especially collision avoidance when the system moves, should be guaranteed. Accordingly, we project a novel unmanned system bionic motion control of complex nonlinear dynamics. The control method can effectively avoid collision in the process of system motion. Simulation results show that the proposed simplification, improved genetic algorithm, and bionic motion control method are stable and effective.


2018 ◽  
Vol 52 (4) ◽  
pp. 502-519 ◽  
Author(s):  
Luis Martí ◽  
Eduardo Segredo ◽  
Nayat Sánchez-Pi ◽  
Emma Hart

Purpose One of the main components of multi-objective, and therefore, many-objective evolutionary algorithms, is the selection mechanism. It is responsible for performing two main tasks simultaneously. First, it has to promote convergence by selecting solutions which are as close as possible to the Pareto optimal set. And second, it has to promote diversity in the solution set provided. In the current work, an exhaustive study that involves the comparison of several selection mechanisms with different features is performed. Particularly, Pareto-based and indicator-based selection schemes, which belong to well-known multi-objective optimisers, are considered. The paper aims to discuss these issues. Design/methodology/approach Each of those mechanisms is incorporated into a common multi-objective evolutionary algorithm framework. The main goal of the study is to measure the diversity preserved by each of those selection methods when addressing many-objective optimisation problems. The Walking Fish Group test suite, a set of optimisation problems with a scalable number of objective functions, is taken into account to perform the experimental evaluation. Findings The computational results highlight that the the reference-point-based selection scheme of the Non-dominated Sorting Genetic Algorithm III and a modified version of the Non-dominated Sorting Genetic Algorithm II, where the crowding distance is replaced by the Euclidean distance, are able to provide the best performance, not only in terms of diversity preservation, but also in terms of convergence. Originality/value The performance provided by the use of the Euclidean distance as part of the selection scheme indicates this is a promising line of research and, to the best of the knowledge, it has not been investigated yet.


Sign in / Sign up

Export Citation Format

Share Document