Free Vibration of Skew Fiber-reinforced Composite and Sandwich Laminates using a Shear Deformable Finite Element Model

2006 ◽  
Vol 8 (1) ◽  
pp. 33-53 ◽  
Author(s):  
Ajay Kumar Garg ◽  
Rakesh Kumar Khare ◽  
Tarun Kant
2010 ◽  
Vol 97-101 ◽  
pp. 1745-1748
Author(s):  
Gui Yu Li ◽  
Jian Feng Li ◽  
Jie Sun ◽  
Wei Dong Li ◽  
Liang Yu Song

In the present study, the finite element model of machining carbon fiber reinforced aluminum matrix composites with representative fiber orientation of 90 degree is established with the following developments: (i) a Johnson-Cook constitutive model of each component in the multi-phase composite materials; (ii) a failure model of the composite material based on physical separation criterion; (iii) the interface between fiber and matrix defined by a interaction. This simulating method can be developed to each kind of fiber reinforced composite materials.


2018 ◽  
Vol 774 ◽  
pp. 241-246
Author(s):  
Jian Hong Gao ◽  
Xiao Xiang Yang ◽  
Li Hong Huang

The finite element analysis (FEA) is a numerical method for predicting the mechanical property of short fiber reinforced composite usefully. However, as we know, there is always a “jamming” limit when generating fiber architecture expecially in the cases of high volume fraction and high aspect ratio of short fiber. Even if the volume fraction and aspect ratio in finite element model meet the practical requirements, the problem of mesh deformity will always occur which would lead to unconverge of numerical computation. In this work, embedded element technique which will help to reduce the probability of the above two problems is employed to establish the finite element model of short fiber reinforced composite. The effect of edge size, thickness and mesh density of FE models on the elastic modulus were investigated. Numerical results show that the value of elastic modulus mainly depend on the edge size and fiber amount of FE model while the effect of thickness can be neglected. The elastic modulus takes to converge for high element number. An inverse method is proposed to calculate volume fraction of short fibers, by which numerical results agree well with the calculation results of empirical formula based on Halpin-Tsai equation.


2013 ◽  
Vol 554-557 ◽  
pp. 1045-1054 ◽  
Author(s):  
Welf Guntram Drossel ◽  
Reinhard Mauermann ◽  
Raik Grützner ◽  
Danilo Mattheß

In this study a numerical simulation model was designed for representing the joining process of carbon fiber-reinforced plastics (CFRP) and aluminum alloy with semi-tubular self-piercing rivet. The first step towards this goal is to analyze the piercing process of CFRP numerical and experimental. Thereby the essential process parameters, tool geometries and material characteristics are determined and in finite element model represented. Subsequently the finite element model will be verified and calibrated by experimental studies. The next step is the integration of the calibrated model parameters from the piercing process in the extensive simulation model of self-piercing rivet process. The comparison between the measured and computed values, e.g. process parameters and the geometrical connection characteristics, shows the reached quality of the process model. The presented method provides an experimental reliable characterization of the damage of the composite material and an evaluation of the connection performances, regarding the anisotropic property of CFRP.


1986 ◽  
Vol 108 (1) ◽  
pp. 1-11 ◽  
Author(s):  
R. L. Spilker ◽  
D. M. Jakobs ◽  
A. B. Schultz

A simple axisymmetric finite element model of a human spine segment containing two adjacent vertebrae and the intervening intervertebral disk was constructed. The model incorporated four substructures: one to represent each of the vertebral bodies, the annulus fibrosus, and the nucleus pulposus. A semi-analytic technique was used to maintain the computational economies of a two-dimensional analysis when nonaxisymmetric loads were imposed on the model. The annulus material was represented as a layered fiber-reinforced composite. This paper describes the selection of material constants to represent the anisotropic layers of the annulus. It shows that a single set of material constants can be chosen so that model predictions of gross disk behavior under compression, torsion, shear, and moment loading are in reasonable agreement with the mean and range of experimentally measured disk behaviors. It also examines the effects of varying annular material properties.


Sign in / Sign up

Export Citation Format

Share Document