OBJECTIVE
Children with nonoperative brain tumors, such as diffuse intrinsic pontine gliomas (DIPGs), often have life-threatening hydrocephalus. Palliative shunting is common in such cases but can be complicated by hardware infection and mechanical failure. Endoscopic third ventriculostomy (ETV) is a minimally invasive alternative to treat hydrocephalus without implanted hardware. Herein, the authors report their institutional experience with palliative ETV for primary pediatric brain tumors.
METHODS
The authors conducted a retrospective review of consecutive patients who had undergone palliative ETV for hydrocephalus secondary to nonresectable primary brain tumors over a 10-year period at Rady Children’s Hospital. Collected variables included age, sex, tumor type, tumor location, presence of leptomeningeal spread, use of a robot for ETV, complications, ETV Success Score (ETVSS), functional status, length of survival, and follow-up time. A successful outcome was defined as an ETV performed without clinically significant perioperative complications or secondary requirement for a new shunt.
RESULTS
Fifteen patients met the study inclusion criteria (11 males, 4 females; average age 7.9 years, range 0.8–21 years). Thirteen patients underwent manual ETV, and 2 patients underwent robotic ETV. Preoperative symptoms included gaze palsy, nausea/vomiting, headache, lethargy, hemiparesis, and seizures. Tumor types included DIPG (3), intraventricular/thalamic glioblastoma (2), and leptomeningeal spread of medulloblastoma (2), anaplastic oligo-/astrocytoma (2), rhabdoid tumor (2), primitive neuroectodermal tumor (1), ganglioglioma (1), pineoblastoma (1), and embryonal carcinoma (1). The mean preoperative ETVSS was 79 ± 8.8. There was 1 perioperative complication, a wound breakdown consistent with refractory hydrocephalus. The mean follow-up was 4.9 ± 5.5 months overall, and mean survival for the patients who died was 3.2 ± 3.6 months. Two patients remained alive at a mean follow-up of 15.7 months. Palliative ETV was successful in 7 patients (47%) and unsuccessful in 8 (53%). While patients with successful ETV were significantly older (11.9 ± 5.6 vs 4.4 ± 4.1 years, p = 0.010), there were no significant differences in preoperative ETVSS (p = 0.796) or postoperative survival (p = 0.476) between the successful and unsuccessful groups. Overall, functional outcomes were similar between the two groups; there was no significant difference in posttreatment Karnofsky Performance Status scores (68.6 ± 19.5 vs 61.3 ± 16.3, p = 0.454), suggesting that including ETV in the treatment algorithm did not worsen outcomes.
CONCLUSIONS
Palliative ETV is a safe and potentially efficacious treatment option in selected pediatric patients with hydrocephalus from nonoperative brain tumors. Close follow-up, especially in younger children, is required to ensure that patients with refractory symptoms receive appropriate secondary CSF diversion.