scholarly journals A Homogeneous Time-Resolved Fluorescence Immunoassay Method for the Measurement of Compound W

2018 ◽  
Vol 13 ◽  
pp. 117727191875748 ◽  
Author(s):  
Biao Huang ◽  
Huixin Yu ◽  
Jiandong Bao ◽  
Manda Zhang ◽  
William L Green ◽  
...  

Objective: Using compound W (a 3,3′-diiodothyronine sulfate [T2S] immuno-crossreactive material)-specific polyclonal antibodies and homogeneous time-resolved fluorescence immunoassay assay techniques (AlphaLISA) to establish an indirect competitive compound W (ICW) quantitative detection method. Method: Photosensitive particles (donor beads) coated with compound W or T2S and rabbit anti-W antibody were incubated with biotinylated goat anti-rabbit antibody. This constitutes a detection system with streptavidin-coated acceptor particle. We have optimized the test conditions and evaluated the detection performance. Results: The sensitivity of the method was 5 pg/mL, and the detection range was 5 to 10 000 pg/mL. The intra-assay coefficient of variation averages <10% with stable reproducibility. Conclusions: The ICW-AlphaLISA shows good stability and high sensitivity and can measure a wide range of compound W levels in extracts of maternal serum samples. This may have clinical application to screen congenital hypothyroidism in utero.

2021 ◽  
pp. 113179
Author(s):  
Shaoxiong Zheng ◽  
Renjing Hu ◽  
Xiaomei Yu ◽  
Lingli Chen ◽  
BinrongWang ◽  
...  

2021 ◽  
Author(s):  
Xindong Chen ◽  
Jianfeng Hong ◽  
Han Zhao ◽  
Zhongyi Xiang ◽  
Yuan Qin ◽  
...  

Abstract Background: A rapid and highly sensitive assay for tumor-associated trypsinogen-2 (TAT-2) based on the time-resolved fluorescence immunoassay (TRFIA) detection technique was developed for the determination of serum TAT-2 levels in cancers. Results: The measurement range of TAT-2-TRFIA was 1.53-300 ng/mL. The within-run and between-run coefficients of variation of TAT-2-TRFIA were 4.38% and 7.82%, respectively. The recovery rate of TAT-2-TRFIA was 103.0%. The cross-reaction rates of trypsin and T-cell immunoglobulin mucin 3 were 0.02% and 0.82%, respectively. The TAT-2-positive rates in lung cancer, liver cancer, nasopharyngeal cancer, cholangiocarcinoma, brain cancer, and pancreatic cancer were 45.9%, 50.0%, 45.0%, 64.3%, 50.0%, and 41.7%, respectively, with the areas under ROC curves of 0.788, 0.734, 0.862, 0.720, 0.887, and 0.585, respectively. In patients with lung cancer, the positive rate of the single indicator CEA was 28.4%, which increased to 60.6% after combined use with TAT-2. In patients with cholangiocarcinoma, the positive rate of CA-199 was 35.7%, which increased to 71.4% after combined use with TAT-2. Conclusions: TAT-2 is expected to be used as an auxiliary diagnostic indicator for the combined use of tumor markers to improve the positive rate and accuracy of detection.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2524 ◽  
Author(s):  
Lea Fellner ◽  
Marian Kraus ◽  
Florian Gebert ◽  
Arne Walter ◽  
Frank Duschek

Laser-induced fluorescence (LIF) is a well-established technique for monitoring chemical processes and for the standoff detection of biological substances because of its simple technical implementation and high sensitivity. Frequently, standoff LIF spectra from large molecules and bio-agents are only slightly structured and a gain of deeper information, such as classification, let alone identification, might become challenging. Improving the LIF technology by recording spectral and additionally time-resolved fluorescence emission, a significant gain of information can be achieved. This work presents results from a LIF based detection system and an analysis of the influence of time-resolved data on the classification accuracy. A multi-wavelength sub-nanosecond laser source is used to acquire spectral and time-resolved data from a standoff distance of 3.5 m. The data set contains data from seven different bacterial species and six types of oil. Classification is performed with a decision tree algorithm separately for spectral data, time-resolved data and the combination of both. The first findings show a valuable contribution of time-resolved fluorescence data to the classification of the investigated chemical and biological agents to their species level. Temporal and spectral data have been proven as partly complementary. The classification accuracy is increased from 86% for spectral data only to more than 92%.


1988 ◽  
Vol 34 (8) ◽  
pp. 1640-1644 ◽  
Author(s):  
M J Khosravi ◽  
R C Morton ◽  
E P Diamandis

Abstract In this new immunofluorometric method for quantification of lutropin in serum, the "sandwich" principle is combined with time-resolved fluorescence measurements, with the europium chelate 4,7-bis(chlorosulfophenyl)-1,10-phenanthroline-2,9-dicarboxylic acid (BCPDA) used as label. A monoclonal antibody to the alpha-subunit of lutropin is adsorbed onto the walls of white-opaque microtiter wells to form the solid-phase capture antibody, and a biotin-labeled soluble monoclonal antibody is used for antigen quantification. The detection system is completed with streptavidin, which has been linked to a protein bulking agent labeled with multiple BCPDA residues. In the presence of excess europium, the fluorescence of the final complex attached to captured lutropin molecules is measured on the dried solid phasse with an automated time-resolved fluorometer. The assay can be performed as a rapid (less than 60 min incubation) or regular (150 min incubation) procedure. The rapid assay is well-suited for routine daily monitoring of increasing or ovulatory lutropin concentrations; the regular assay, with its greater sensitivity (0.5 int. unit/L), is a practical procedure for lutropin measurements in hyposecretory states. The assay measures up to 240 int. units/L, and results compare well with those by a commercially available radioimmunoassay, an immunoradiometric assay, and another time-resolved immunofluorometric procedure.


Sign in / Sign up

Export Citation Format

Share Document