Thermomechanical performance of carbon fiber reinforced polymer synchronizer friction liners

Author(s):  
Daniel Häggström ◽  
Ulf Sellgren ◽  
Stefan Björklund

To improve the ability of a thermomechanical simulation model for carbon fiber reinforced polymer lined synchronizers to predict synchronization performance and reliability, temperature dependent material data for the specific carbon fiber reinforced polymer lining is needed. The compressive modulus, coefficient of thermal expansion, specific heat and thermal conductivity are determined experimentally. The effect of each material property on the focal surface temperature is analyzed, and it is shown that the compressive modulus has the largest influence for all analyzed load cases. Physical tests show that surface hot spots begin to appear at a simulated focal surface temperature of 200[Formula: see text]C, while performance degradation occurs at a simulated focal surface temperature of 230[Formula: see text]C–250[Formula: see text]C.

2019 ◽  
Vol 7 (1) ◽  
pp. 30-34
Author(s):  
A. Ajwad ◽  
U. Ilyas ◽  
N. Khadim ◽  
Abdullah ◽  
M.U. Rashid ◽  
...  

Carbon fiber reinforced polymer (CFRP) strips are widely used all over the globe as a repair and strengthening material for concrete elements. This paper looks at comparison of numerous methods to rehabilitate concrete beams with the use of CFRP sheet strips. This research work consists of 4 under-reinforced, properly cured RCC beams under two point loading test. One beam was loaded till failure, which was considered the control beam for comparison. Other 3 beams were load till the appearance of initial crack, which normally occurred at third-quarters of failure load and then repaired with different ratios and design of CFRP sheet strips. Afterwards, the repaired beams were loaded again till failure and the results were compared with control beam. Deflections and ultimate load were noted for all concrete beams. It was found out the use of CFRP sheet strips did increase the maximum load bearing capacity of cracked beams, although their behavior was more brittle as compared with control beam.


Author(s):  
E. A. Nikolaeva ◽  
A. N. Timofeev ◽  
K. V. Mikhaylovskiy

This article describes the results of the development of a high thermal conductivity carbon fiber reinforced polymer based on carbon fiber from pitch and an ENPB matrix modified with a carbon powder of high thermal conductivity. Data of the technological scheme of production and the results of determining the physicomechanical and thermophysical characteristics of carbon fiber reinforced polymer are presented. 


Sign in / Sign up

Export Citation Format

Share Document