thermophysical characteristics
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 105)

H-INDEX

13
(FIVE YEARS 4)

2022 ◽  
Vol 51 (4) ◽  
pp. 930-942
Author(s):  
Albert Nugmanov ◽  
Galina Meshcheryakova ◽  
Viktor Lebedev ◽  
Dmitry Borodulin ◽  
Igor Aleksanian ◽  
...  

Introduction. Pectin-based protective coatings can produce a perfect biodegradable edible film. Secondary watermelon raw materials are a promising resource for this type of food coating as it contains 13.4% of pectin components, of which 8.1% is protopectin. The present research objective was to find the density and thermophysical characteristics of the pectin extract in order to optimize the drying process. Study objects and methods. The research featured a pectin extract from watermelon rind. Its thermophysical properties were defined according to the thermocouple inertia method. The calorimetric method was used to change the aggregation state, while the pycnometric method was applied to calculate the density. The method of criterion equations helped to define the heat transfer coefficient. Results and discussion. The average density of the final film material was 652 kg/m3 and that of the liquid semi-finished product was 1,028 kg/m3. The research also revealed the dependence of physical density and humidity W, heat capacity, thermal diffusivity, and thermal conductivity. For different W, averaged were 3393, 3225, 3137, and 3113, respectively. The study also provided the criterion dependence for determining the heat transfer coefficient and modified α on the speed of the air coolant for artificial convection at conventional coolant temperature (≈ 100°C) in contact with the food product surface (≈ 80°C). Conclusion. The article introduces the thermophysical characteristics and physical density of watermelon gel for various humidity and thermal agent parameters, as well as a modified criterion dependence for determining the heat transfer coefficient. The research results can be used to design dehydration operations, other thermophysical processes, and their equipment.


2022 ◽  
Author(s):  
M. Podzorova

Abstract. The mechanical properties of polymer composites based on polylactide vary significantly over a wide range of values. It has been established that photodegradation of low-density polyethylene – polylactide blends occurs both in the amorphous and in the crystalline phase of the PLA matrix, which leads to deterioration of the mechanical properties of the studied mixtures. Ozonolysis affects the strength parameters of polylactide-polyethylene samples as well as photodegradation. By the differential scanning calorimetry it is determined that the melting point of polylactide decreases by 2-4 °C, the glass transition temperature - by 1-3 °C, while the degree of crystallinity increases by 3-6%. In the process of ozonolysis, the thermophysical characteristics of PLA/LDPE have changed.


Author(s):  
Yevgenij Zaytsev

At the present stage of the development of technology, it is necessary to ensure the strength, reliability and durability of the structure that successfully functions under conditions of high-temperature heat exchange as maximum as possible. In this regard, graphite structural elements are widely used, and they are also applied for parts of space and aircraft, jet and rocket engines. The transversely isotropic graphite cylinder used in this work has a unique set of qualities that make it indispensable for problems in nuclear physics and power engineering; however, in the calculation of thermal engineering practice, it has not been studied enough, since it contains a large scatter of thermophysical characteristics for various grades of graphite. The aim of the study, including the basis of the developed method for solving boundary value problems of doubly nonlinear unsteady thermal conductivity, is to consider the effect of temperature dependences of the thermophysical characteristics of the material on temperature, zonal radiative-convective heat transfer and anisotropy on the distribution of temperature fields along the length, at the center and surface of a semi-infinite solid cylinder. The essence of this method is that the Goodman’s and Kirchhoff’s transformations are applied to the problem posed converted to a dimensionless form, then the relative temperature and functions from it, are expanded in the series of sines on the a priori interval, then the superposition principle is applied, after which the original setting is converted to a set of linearized problems with reduced thermophysical characteristics. Linear problems are solved by the method of integral transformations, which are summed up. The upper limit of the priori interval is determined from the condition that the relative temperature obtained from the solution of the problem Fo ® ¥ takes the value of the upper limit of the a priori interval. A large number of numerical calculations in the Matlab environment graphically show changes in the relative temperature on the axis and surface of the cylinder in a wide range of Fourier criteria. It is found that with an increase in the Fourier criterion, the character of heating changes qualitatively from the axis to the surface of the cylinder, both in terms of nonlinearities and anisotropy. For the case of double nonlinearity, the location of the temperature fields at different anisotropies in comparison with an isotropic material is shown graphically.


Author(s):  
A. Kovalov ◽  
◽  
Y. Otrosh ◽  
V. Tomenko ◽  
O. Vasylyev ◽  
...  

Abstract. The results of the development of fire-retardant substances based on domestic materials to increase the fire resistance of fire-retardant steel structures are presented. New compositions of fire-retardant substances on the basis of domestic materials capable of swelling are developed. A series of experimental studies to determine the heating temperature of fire-resistant steel structures. For this purpose, samples of reduced size in the form of a steel plate with a flame retardant applied to the heating surface were used. Fire tests of fire-retardant steel plates coated with the developed fire-retardant substance forming a coating on the protected surface, in the conditions of their tests on the standard temperature of the fire using the installation to determine the fire-retardant ability of fire-retardant coatings. The results of experimental determination of temperature from an unheated surface of steel plates with a fire-retardant covering in the conditions of fire influence at a standard temperature mode of a fire are analyzed. Based on the obtained data (temperature in the furnace and from the unheated surface of steel plates with fire protection system) the solution of the inverse problems of thermal conductivity found thermophysical characteristics of fire protection coating (thermal conductivity and specific volume), which can be used for thermal calculation heating of fire-retardant steel structures at arbitrary fire temperatures. The thermophysical characteristics of the formed fire-retardant coating are substantiated to find the characteristics of the fire-retardant ability of the newly created fire-retardant coating and to ensure the fire resistance of fire-retardant steel structures. The efficiency of the developed fire-retardant coating for protection of steel structures is proved.


2021 ◽  
Vol 30 (5) ◽  
pp. 84-97
Author(s):  
I. A. Pustovalov

Introduction. The aim of the research project is to study the effect produced by one type of carbon nanostructures, or astralenes, on processes of extinguishing oil product flame using finely sprayed water. Materials and research methods. The research is focused on fire extinguishing suspensions used in modular water mist installations for the fire extinguishing of oil products. Astralene-modified distilled water, having the volumetric concentration of nanostructures equal to 0.05–1.0 percent, was used as a fire extinguishing substance under research. The experiment was focused on the study of thermophysical characteristics of fire extinguishing liquids, such as density, dynamic viscosity, surface tension, specific heat of vaporization. Also, studies were carried out to identify the rate of evaporation, the distribution of droplet sizes of sprayed fire extinguishing compositions, and the time needed to extinguish the model source of ignition of oil products.Research results. The dispersion of nanostructures of fire-extinguishing liquids allows to increase their density, surface tension by 20.6 %, increase the specific heat of vaporization if the volumetric concentration of astralenes is equal to 0.25 and 0.5 %, and boost the dynamic viscosity by 6.68–15.38 % at the temperature of 20 °С. The research was carried out to find the rate of evaporation of droplets of the modified fire-extinguishing liquid. It was found that an increase in the volumetric concentration of nanostructures from 0.05 to 0.5 % causes reduction in the evaporation rate.The droplet speed increases if the volumetric dispersion of astalenes goes up to 0 to 0.25 %. However, a further increase in the volumetric concentration of astralenes to 1.0 % causes a reduction in their speed. The extinguishing time was identified using a laboratory fire extinguishing installation. The distribution of droplet sizes of fire-extinguishing compositions is in the range of 20 to 160 microns. The fire extinguishing capacity of the installation was highest if a fire extinguishing composition had a 0.5 % volumetric concentration of astralenes.Conclusions. The modification of a fire extinguishing composition by carbon nanostructures leads to a change in its thermophysical characteristics. The addition of this composition to the installation, used at facilities involved in the processing of petroleum products, will increase its fire extinguishing ability. Further areas of research may include the development of astralene stabilization methods for suspensions and adaptation to low temperatures.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022044
Author(s):  
O Voron ◽  
V Moiseev

Abstract The article deals with the organization of heat exchange processes when using a new heating system for the cargo room of the isothermal car. Using the example of considering a stack formed from glass containers with fruit juices packed in cardboard boxes, the equivalent thermophysical characteristics of the cargo in the stack are formulated. Analytical methods are used to determine the main regularities of the regular thermal regime and the nature of thermo-gravitational flows in the cargo room of the car. The possibilities of improving the design of the heating system of the cargo room of isothermal rolling stock for the transportation of perishable cargo are considered. The possibilities of modernization of specialized equipment allowing optimization of the temperature regime in the cargo room of the car are presented. The article deals with the organization of heat exchange processes when using a new heating system for the cargo room of the isothermal car. Using the example of considering a stack formed from glass containers with fruit juices packed in cardboard boxes, the equivalent thermophysical characteristics of the cargo in the stack are formulated. Analytical methods are used to determine the main regularities of the regular thermal regime and the nature of thermo-gravitational flows in the cargo room of the car. The possibilities of improving the design of the heating system of the cargo room of isothermal rolling stock for the transportation of perishable cargo are considered. The possibilities of modernization of specialized equipment allowing optimization of the temperature regime in the cargo room of the car are presented.


Author(s):  
R. A. Mironov ◽  
V. O. Gaidenko ◽  
M. O. Zabezhailov ◽  
O. V. Tomchani ◽  
V. V. Cherepanov ◽  
...  

Author(s):  
N. V. Titov ◽  
A. V. Kolomeichenko ◽  
R. Yu. Soloviev ◽  
P. V. Chumakov

2021 ◽  
pp. 1-14
Author(s):  
Md. Amirul Islam ◽  
Animesh Pal ◽  
Bidyut Baran Saha ◽  
Seong-Ho Yoon ◽  
Jin Miyawaki

Sign in / Sign up

Export Citation Format

Share Document