Seismic capacity estimation of a reinforced concrete containment building considering bidirectional cyclic effect

2018 ◽  
Vol 22 (5) ◽  
pp. 1106-1120
Author(s):  
Zhi Zheng ◽  
Changhai Zhai ◽  
Xu Bao ◽  
Xiaolan Pan

This study serves to estimate the seismic capacity of the reinforced concrete containment building considering its bidirectional cyclic effect and variations of energy. The implementation of the capacity estimation has been performed by extending two well-known methods: nonlinear static pushover and incremental dynamic analysis. The displacement and dissipated energy demands are obtained from the static pushover analysis considering bidirectional cyclic effect. In total, 18 bidirectional earthquake intensity parameters are developed to perform the incremental dynamic analysis for the reinforced concrete containment building. Results show that the bidirectional static pushover analysis tends to decrease the capacity of the reinforced concrete containment building in comparison with unidirectional static pushover analysis. The 5% damped first-mode geometric mean spectral acceleration strongly correlates with the maximum top displacement of the containment building. The comparison of the incremental dynamic analysis and static pushover curves is employed to determine the seismic capacity of the reinforced concrete containment building. It is concluded that bidirectional static pushover and incremental dynamic analysis studies can be used in performance evaluation and capacity estimation of reinforced concrete containment buildings under bidirectional earthquake excitations.

2017 ◽  
Vol 33 (1) ◽  
pp. 25-44 ◽  
Author(s):  
Henry V. Burton ◽  
Mayank Sharma

A performance-based methodology is presented to quantify the reduction in collapse safety of main shock–damaged reinforced concrete frame buildings with infills. After assessing their collapse safety in the intact state, the residual collapse capacity following main shock damage is evaluated by conducting incremental dynamic analysis to collapse using main shock–aftershock ground motion sequences. The median collapse capacity and conditional probability of collapse for the main shock–damaged building, normalized by that of the intact case are the metrics used to measure the reduction in collapse safety. Taller buildings with built-in soft and weak first stories have the highest reduction in collapse safety as a result of main shock damage. Among the engineering demand parameters recorded during the main shock analyses, story drift demands (peak transient and residual) and infill strut axial deformations have the highest correlation with the decline in collapse performance. The results of the main shock–aftershock incremental dynamic analysis to collapse are used to develop fragility functions for the limit state defined by the building being structurally unsafe to occupy.


2018 ◽  
Vol 191 ◽  
pp. 00006
Author(s):  
Siham Bouras ◽  
Abdellatif Khamlichi ◽  
Sabri Attajkani

Seismic rehabilitation of pre-code existing buildings requires the choice of the method of strengthening and the determination of the amount of materials to be used optimally. Accurate evaluation of the building response in terms of its capacity at the initial state and that obtained after application of some reinforcement should be performed. For regular buildings, the nonlinear static analysis procedure constitutes a powerful tool that is used to estimate seismic performance. This procedure is characterised by its high effectiveness to account for the non-linear characteristics of the materials involved and provides a direct mean to shape the capacity curve of the construction; enabling then to make the correct decision about rehabilitation task with regards to a desired performance state. In this work, the nonlinear static pushover analysis was performed by means of ZeusNL software. Use was made of the Moroccan seismic regulations RPS2000 version 2011to determine the targeted seismic demand. Considering a four floor reinforced concrete building which is undersized with regards to actual seismic regulation, jacketing with fiber reinforced composites at different reinforcement rates was analyzed. The obtained results were expressed in terms of the lateral resistance capacity and the building tip displacement. Optimal jacketing of columns was then determined.


2020 ◽  
Vol 14 (04) ◽  
pp. 2050016
Author(s):  
Hamid Reza Ahmadi ◽  
Navideh Mahdavi ◽  
Mahmoud Bayat

To estimate seismic demand and capacity of structures, it has been suggested by researchers that Incremental Dynamic Analysis (IDA) is one of the most accurate methods. Although this method shows the most accurate response of the structure, some problems, such as difficulty in modeling, time-consuming analysis and selection of the earthquake records, encourage researchers to find some ways to estimate the dynamic response of structures by using static nonlinear analysis. The simplicity of pushover analysis in evaluating structural nonlinear response serves well as an alternative to the time-history analysis method. In this paper, based on the concepts of the displacement-based adaptive pushover (DAP), a new approach is proposed to estimate the IDA curves. The performance of the proposed method has been investigated using 3- and 9-story moment-resisting frames. In addition, the results were compared with exact IDA curves and IDA curves developed by the modal pushover analysis (MPA) based method. For evaluation, IDA curves with 16%, 50% and 84% fractile were estimated. Using the results, [Formula: see text] capacities corresponding to Collapse Prevention (CP) limit state were calculated and assessed. Finite element modeling of the structures has been carried out by using ZEUS-NL software. Based on the achieved results, the proposed approach can estimate the capacity of the structure accurately. The significant advantage of the applied approach is the low computational cost and desirable accuracy. The proposed approach can be used to develop the approximate IDA curves.


Sign in / Sign up

Export Citation Format

Share Document