Experiments on reinforced concrete beam-column joints under cyclic loads and evaluating their response by nonlinear static pushover analysis

2010 ◽  
Vol 35 (1) ◽  
pp. 99-117 ◽  
Author(s):  
Akanshu Sharma ◽  
G.R. Reddy ◽  
Rolf Eligehausen ◽  
K.K. Vaze ◽  
A.K. Ghosh ◽  
...  
2013 ◽  
Vol 470 ◽  
pp. 1007-1010 ◽  
Author(s):  
Zhi Bin Su ◽  
Tao Han ◽  
Sheng Nan Sun

To study the nonlinear mechanical characteristics of reinforced concrete shear wall structures under rare earthquakes, a single reinforced concrete shear wall model is established in SAP2000 program, which is simulated by nonlinear multi-layer shell element. Nonlinear static pushover analysis of the model is presented by uniform acceleration lateral load pattern and inverted triangle lateral load pattern. The relationship curve between base shear and top displacement of shear wall, and the stress distribution diagrams of the concrete layer and rebar layer are obtained. It may be concluded that, the yielding of rebar layer and the cracking of the concrete layer may be observed by stress distribution diagrams. SAP2000 program is feasible to nonlinear simulation of shear wall structures.


Author(s):  
M Keshava Murthy ◽  
Ashwini L K

Pushover analysis is an elegant tool to visualise the performance level of a building under a given earthquake. The purpose of the paper is to summarize the Non Linear static Pushover analysis of medium rise RC bare frame and high rise RC infilled structure with soft stories at different levels using ETABS software. Results concluded that due to the introduction of soft stories in the higher level the intensity of hinge formation becomes lower and lower and at the same time displacement and base shear increases


2011 ◽  
Vol 147 ◽  
pp. 278-282
Author(s):  
Teresa A. Roseenid ◽  
N. Premavathi ◽  
Gunasekaran Umarani

The inelastic seismic response of an existing multi-span concrete bridge is investigated by performing nonlinear static pushover analysis. The bridge is subjected to lateral forces distributed proportionally over the span of the bridge in accordance with the product of mass and mode shape. The bridge is pushed up to the target displacement and the hinge formations of the bridge in different steps of the pushover procedure in the transverse direction are obtained. The expected capacity of the bridge is evaluated and compared with the displacement demand.


2018 ◽  
Vol 191 ◽  
pp. 00006
Author(s):  
Siham Bouras ◽  
Abdellatif Khamlichi ◽  
Sabri Attajkani

Seismic rehabilitation of pre-code existing buildings requires the choice of the method of strengthening and the determination of the amount of materials to be used optimally. Accurate evaluation of the building response in terms of its capacity at the initial state and that obtained after application of some reinforcement should be performed. For regular buildings, the nonlinear static analysis procedure constitutes a powerful tool that is used to estimate seismic performance. This procedure is characterised by its high effectiveness to account for the non-linear characteristics of the materials involved and provides a direct mean to shape the capacity curve of the construction; enabling then to make the correct decision about rehabilitation task with regards to a desired performance state. In this work, the nonlinear static pushover analysis was performed by means of ZeusNL software. Use was made of the Moroccan seismic regulations RPS2000 version 2011to determine the targeted seismic demand. Considering a four floor reinforced concrete building which is undersized with regards to actual seismic regulation, jacketing with fiber reinforced composites at different reinforcement rates was analyzed. The obtained results were expressed in terms of the lateral resistance capacity and the building tip displacement. Optimal jacketing of columns was then determined.


2014 ◽  
Vol 12 (1) ◽  
pp. 25-40
Author(s):  
Mladen Cosic ◽  
Stanko Brcic

This paper presents the original method of controlled building damage mechanisms based on Nonlinear Static Pushover Analysis (NSPA-DMBD). The optimal building damage mechanism is determined based on the solution of the Capacity Design Method (CDM), and the response of the building is considered in incremental situations. The development of damage mechanism of a system in such incremental situations is being controlled on the strain level, examining the relationship of current and limit strains in concrete and reinforcement steel. Since the procedure of the system damage mechanism analysis according to the NSPA-DMBD method is being iteratively implemented and designing checked after the strain reaches the limit, for this analysis a term Iterative-Interactive Design (IID) has been introduced. By selecting, monitoring and controlling the optimal damage mechanism of the system and by developed NSPA-DMBD method, damage mechanism of the building is being controlled and the level of resistance to an early collapse is being increased.


2021 ◽  
Author(s):  
Saurabh Kulkarni ◽  
S. S Kadam ◽  
P. B Zambare

In the present work, an attempt is made to investigate response reduction factor (R) values of different soil types by using nonlinear static (Pushover) analysis for R.C. elevated rectangular water tank structure. All the parameters were investigated by varying properties of soft, medium and hard soils to cover a method of nonlinear static (Pushover) analysis. The zone factor (Z) kept constant Z – III for pandharpur site location and capacity of 150 m3 tank full in condition. This has resulted into SAP 2000 finite element software. The analysis of response reduction factor (R) value was done under three different soil conditions i.e. soft soil properties, medium soil properties, and hard soil properties. Response reduction factor (R) values indicate that R.C. elevated rectangular water tank structure without soil properties behaves quite the one value as per codal provisions.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5917
Author(s):  
Seweryn Kokot

This paper investigates the behaviour of a reinforced concrete beam under a support removal. A detailed parametric analysis is carried out, covering the effect of support removal rate on dynamic response. The linear elastic and nonlinear inelastic responses are computed and studied in detail. Critical parameters during the structural response are identified. In order to determine the ultimate load, the vertical pushover analysis is performed. The key parameters driving the beam response are assumed as random variables, and respective reliability study makes it possible to check the overall uncertainty of the dynamic response. In particular, the response spectrum measuring the effect of support removal rate has been computed. It has been demonstrated that the critical vertical response occurs when the time of support removal is up to to 17% of the first natural period. The vertical pushover analysis results in obtaining capacity curves and showed the order in which two plastic hinges occur for various load patterns. Finally, the reliability-based sensitivity analysis indicates the geometric cross-section cover and height are the most sensitive parameters of the beam response.


Sign in / Sign up

Export Citation Format

Share Document