scholarly journals Effective finite element model in-loop system of laminated cylindrical structure for multiple inputs and multiple outputs active vibration control

2019 ◽  
Vol 38 (2) ◽  
pp. 664-683 ◽  
Author(s):  
Jinxin Liu ◽  
Minqi Cui ◽  
Baijie Qiao ◽  
Zengguang Li ◽  
Zhibo Yang ◽  
...  

Active vibration control of large laminated cylindrical structures, for example, the cabin of space, air, surficial or subaqueous vehicles, usually requires multiple inputs and multiple outputs to the system, since there are usually multiple vibration sources and each source contains multiple frequency components. The performance of multiple inputs and multiple outputs control system will be dramatically affected by the complex dynamic behavior of the laminated cylindrical structure, thus an effective model is in great request in analyzing and designing the control system. However, there is seldom distributed parametric model, typically, finite element model, applying to the active vibration control system, because of its computational complexity. In this work, we propose an effective finite element model in-loop system of laminated cylindrical structure for multiple inputs and multiple outputs active vibration control simulation. Firstly, an finite element model of laminated thick cylindrical structure with four-node Mindlin degenerated shell element has been constructed. Then, a model reduction procedure has been proposed to obtain in-loop model of the control system. The numerical global modal analysis and harmonic response analysis of the cylindrical structure have been conducted to verify the correctness of the model. Afterward, a multiple inputs and multiple outputs adaptive algorithm which is able to coup with multiple frequencies and multiple sources vibration has been applied to the finite element model in-loop system. Finally, four numerical case studies have been conducted, in which the vibration sources contain multiple frequency components and artificial colored noises. The result shows that the vibration of the multiple control points can be dramatically suppressed simultaneously, which demonstrates the effectiveness of the algorithm and finite element model in-loop system.

2010 ◽  
Vol 29-32 ◽  
pp. 589-595
Author(s):  
Yong Liang Zhang ◽  
Shou Gen Zhao ◽  
Lun Long ◽  
Kang Li

The objective of this study is to develop a general design scheme for shape memory alloys (SMA) intelligent structure. The scheme involves dynamic modeling and closed-loop simulation in a finite element environment. First, the structure of multi-body finite element model simulating the real solar array is established. SMA wire is appended on the model. The physical value of the strain, displacement, velocity and acceleration at the sensors locations separately is acted as the feedback signal. The value is multiplied by the control gain to calculate the voltage inputted to SMA wire. The finite element model is then modified to accept control laws and perform closed-loop simulations. Finally numerical examples have demonstrated the efficiency of the vibration control.


2013 ◽  
Vol 816-817 ◽  
pp. 353-357
Author(s):  
Chuan Liang Shen ◽  
Da Xue Wang ◽  
Ye Han

The numerical simulation and experimental method are adopted to analyze the piezoelectric vibration control of the simplified autobody beam structure. The autobody beam structure is simplified as a beam fixed at both ends. The finite element model of beam structure with piezoelectric patches is established. The static analysis and modal analysis is conducted by the piezoelectric analysis of the finite element analysis software. The proportional and proportional-derivative control methods are studied in the piezoelectric active vibration control analysis for the simplified beam structure. The experimental system is established to obtain the vibration control effectiveness of the beam structure. The experimental results show that the type of two ends patching beam has more effective vibration control ability than the central patched beam.


2020 ◽  
Vol 24 (1) ◽  
pp. 7-16
Author(s):  
Hanane Serhane ◽  
Kouider Bendine ◽  
Farouk Benallel Boukhoulda ◽  
Abdelkader Lousdad

AbstractAn active method of vibration control of a smart sandwich plate (SSP) using discrete piezoelectric patches is investigated. In order to actively control the SSP vibration, the plate is equipped with three piezoelectric patches that act as actuators. Based on the classical plate theory, a finite element model with the contributions of piezoelectric sensor and actuator patches on the mass and stiffness of the sandwich plate was developed to derive the state space equation. LQR control algorithm is used in order to actively control the SSP vibration. The accuracy of the present model is tested in transient and harmonic loads. The applied piezoelectric actuator provides a damping effect on the SSP vibration. The amplitudes of vibrations and the damping time were significantly reduced when the control is ON.


2021 ◽  
Author(s):  
Yong Xia

Vibration control strategies strive to reduce the effect of harmful vibrations such as machining chatter. In general, these strategies are classified as passive or active. While passive vibration control techniques are generally less complex, there is a limit to their effectiveness. Active vibration control strategies, which work by providing an additional energy supply to vibration systems, on the other hand, require more complex algorithms but can be very effective. In this work, a novel artificial neural network-based active vibration control system has been developed. The developed system can detect the sinusoidal vibration component with the highest power and suppress it in one control cycle, and in subsequent cycles, sinusoidal signals with the next highest power will be suppressed. With artificial neural networks trained to cover enough frequency and amplitude ranges, most of the original vibration can be suppressed. The efficiency of the proposed methodology has been verified experimentally in the vibration control of a cantilever beam. Artificial neural networks can be trained automatically for updated time delays in the system when necessary. Experimental results show that the developed active vibration control system is real time, adaptable, robust, effective and easy to be implemented. Finally, an experimental setup of chatter suppression for a lathe has been successfully implemented, and the successful techniques used in the previous artificial neural network-based active vibration control system have been utilized for active chatter suppression in turning.


Sign in / Sign up

Export Citation Format

Share Document