scholarly journals Numerical analysis based on finite element method of active vibration control of a sandwich plate using piezoelectric patches

2020 ◽  
Vol 24 (1) ◽  
pp. 7-16
Author(s):  
Hanane Serhane ◽  
Kouider Bendine ◽  
Farouk Benallel Boukhoulda ◽  
Abdelkader Lousdad

AbstractAn active method of vibration control of a smart sandwich plate (SSP) using discrete piezoelectric patches is investigated. In order to actively control the SSP vibration, the plate is equipped with three piezoelectric patches that act as actuators. Based on the classical plate theory, a finite element model with the contributions of piezoelectric sensor and actuator patches on the mass and stiffness of the sandwich plate was developed to derive the state space equation. LQR control algorithm is used in order to actively control the SSP vibration. The accuracy of the present model is tested in transient and harmonic loads. The applied piezoelectric actuator provides a damping effect on the SSP vibration. The amplitudes of vibrations and the damping time were significantly reduced when the control is ON.

2007 ◽  
Vol 04 (01) ◽  
pp. 141-162 ◽  
Author(s):  
V. BALAMURUGAN ◽  
B. MANIKANDAN ◽  
S. NARAYANAN

This paper presents a higher order — field consistent — piezolaminated 8-noded plate finite element with 36 elastic degrees-of-freedom per element and two electric degrees-of-freedom per element, one each for the piezoelectric sensor and actuator. The higher order plate theory used satisfies the stress and displacement continuity at the interface of the composite laminates and has zero shear stress on the top and bottom surfaces. The transverse shear deformation is of a higher order represented by the trigonometric functions allowing us to avoid the shear correction factors. In order to maintain the field consistency, the inplane displacements, u and v are interpolated using linear shape functions, the transverse displacement w is interpolated using hermite cubic interpolation function, while rotations θx and θy are interpolated using quadratic interpolation function. The element is developed to include stiffness and the electromechanical coupling of the piezoelectric sensor/actuator layers. The active vibration control performance of the piezolaminated smart composite plates has been studied by modeling them with the above element and applying various control strategies.


2020 ◽  
Vol 14 (3) ◽  
pp. 166-174
Author(s):  
Mostefa Salah ◽  
Farouk B. Boukhoulda ◽  
Mohamed Nouari ◽  
Kouider Bendine

Abstract Due to their impressive capacity of sensing and actuating, piezoelectric materials have been widely merged in different industrial fields, especially aeronautic and aerospace area. However, in the aeronautic industry, the structures are operating under critical environmental loads such as high and very low temperature, which made the investigation of the effect of thermal forces on the piezoelectric structures indispensable to reach the high functionality and performance. The present paper focuses on the effect of thermal loads on the active vibration control (AVC) of structures like beams. For this purpose, a finite element model of composite beam with fully covered piezoelectric sensor and actuator based on the well-known high order shear deformation theory is proposed by taking into account the electrical potential field and a linear temperature field. Hamilton’s principle is used to formulate the electro-thermo-mechanical governing equations. The negative velocity feedback controller is implemented to provide the necessary gain for the actuator. Different analyses are effectuated to present the effect of the temperature ranging from -70°C to 70°C on the active vibration control of the composite beam.


2019 ◽  
Vol 38 (2) ◽  
pp. 664-683 ◽  
Author(s):  
Jinxin Liu ◽  
Minqi Cui ◽  
Baijie Qiao ◽  
Zengguang Li ◽  
Zhibo Yang ◽  
...  

Active vibration control of large laminated cylindrical structures, for example, the cabin of space, air, surficial or subaqueous vehicles, usually requires multiple inputs and multiple outputs to the system, since there are usually multiple vibration sources and each source contains multiple frequency components. The performance of multiple inputs and multiple outputs control system will be dramatically affected by the complex dynamic behavior of the laminated cylindrical structure, thus an effective model is in great request in analyzing and designing the control system. However, there is seldom distributed parametric model, typically, finite element model, applying to the active vibration control system, because of its computational complexity. In this work, we propose an effective finite element model in-loop system of laminated cylindrical structure for multiple inputs and multiple outputs active vibration control simulation. Firstly, an finite element model of laminated thick cylindrical structure with four-node Mindlin degenerated shell element has been constructed. Then, a model reduction procedure has been proposed to obtain in-loop model of the control system. The numerical global modal analysis and harmonic response analysis of the cylindrical structure have been conducted to verify the correctness of the model. Afterward, a multiple inputs and multiple outputs adaptive algorithm which is able to coup with multiple frequencies and multiple sources vibration has been applied to the finite element model in-loop system. Finally, four numerical case studies have been conducted, in which the vibration sources contain multiple frequency components and artificial colored noises. The result shows that the vibration of the multiple control points can be dramatically suppressed simultaneously, which demonstrates the effectiveness of the algorithm and finite element model in-loop system.


2013 ◽  
Vol 816-817 ◽  
pp. 353-357
Author(s):  
Chuan Liang Shen ◽  
Da Xue Wang ◽  
Ye Han

The numerical simulation and experimental method are adopted to analyze the piezoelectric vibration control of the simplified autobody beam structure. The autobody beam structure is simplified as a beam fixed at both ends. The finite element model of beam structure with piezoelectric patches is established. The static analysis and modal analysis is conducted by the piezoelectric analysis of the finite element analysis software. The proportional and proportional-derivative control methods are studied in the piezoelectric active vibration control analysis for the simplified beam structure. The experimental system is established to obtain the vibration control effectiveness of the beam structure. The experimental results show that the type of two ends patching beam has more effective vibration control ability than the central patched beam.


2017 ◽  
Vol 28 (18) ◽  
pp. 2603-2616 ◽  
Author(s):  
Asif Khan ◽  
Hyun Sung Lee ◽  
Heung Soo Kim

In this article, the effect of a sensor-debonding failure on the active vibration control of a smart composite plate is investigated numerically. A mathematical model of the smart structure with a partially debonded piezoelectric sensor is developed using an improved layerwise theory, a higher-order electric-potential field that serves as the displacement field, and the potential variation through the piezoelectric patches. A state-space form that is based on the reduced-order model is employed for the controller design. A control strategy with a constant gain and velocity feedback is used to assess the vibration-control characteristics of the controller in the presence of the sensor-debonding failure. The obtained results show that sensor-debonding failure reduces the sensor-output, control-input signal, and active damping in magnitude that successively degrades the vibration attenuation capability of the active vibration controller. The settling time and relative tip displacement of the controlled structure increase with the increasing length of partial debonding between the piezoelectric sensor and host structure. Furthermore, a damage-sensitive feature along with multidimensional scaling showed excellent results for the detection and quantification of sensor-debonding failure in the active vibration control of smart structures.


Author(s):  
Giovanni Ferrari ◽  
Margherita Capriotti ◽  
Marco Amabili ◽  
Rinaldo Garziera

The active vibration control of a rectangular sandwich plate by Positive Position Feedback is experimentally investigated. The thin walled structure, consisting of carbon-epoxy outer skins and a Nomex paper honeycomb core, has completely free boundary conditions. A detailed linear and nonlinear characterization of the vibrations of the plate was previously performed by our research group [1, 2]. Four couples of unidirectional Macro Fiber Composite (MFC) piezoelectric patches are used as strain sensors and actuators. The positioning of the patches is led by a finite element modal analysis, in the perspective of a modal control strategy aimed at the lowest four natural frequencies of the structure. Numerical and experimental verifications estimate the resulting influence of the control hardware on the modal characteristics of the plate. Experimental values are also extracted for the control authority of the piezoelectric patches in the chosen configuration. Single Input – Single Output (SISO) and MultiSISO Positive Position Feedback algorithms are tested and the transfer function parameters of the controller are tuned according to the previously known values of modal damping. A totally experimental procedure to determine the participation matrices, necessary for the Multiple-Input and Multiple-Output configuration, is developed. The resulting algorithm proves successful in selectively reducing the vibration amplitude of the first four vibration modes in the case of a broadband disturbance. PPF is therefore used profitably on laminated composite plates in conjunction with strain transducers, for the control of the low frequency range up to 100 Hz. The relevant tuning procedure moreover, proves straightforward, despite the relatively high number of transducers. The rigid body motions which arise in case of free boundary conditions do not affect the operation of the active control.


Sign in / Sign up

Export Citation Format

Share Document