scholarly journals New hybrid between SPEA/R with deep neural network: Application to predicting the multi-objective optimization of the stiffness parameter for powertrain mount systems

2019 ◽  
Vol 39 (4) ◽  
pp. 850-865
Author(s):  
Dinh-Nam Dao ◽  
Li-Xin Guo

In this study, a new methodology, hybrid Strength Pareto Evolutionary Algorithm Reference Direction (SPEA/R) with Deep Neural Network (HDNN&SPEA/R), has been developed to achieve cost optimization of stiffness parameter for powertrain mount systems. This problem is formalized as a multi-objective optimization problem involving six optimization objectives: mean square acceleration of a rear engine mount, mean square displacement of a rear engine mount, mean square acceleration of a front left engine mount, mean square displacement of a front left engine mount, mean square acceleration of a front right engine mount, and mean square displacement of a front right engine mount. A hybrid HDNN&SPEA/R is proposed with the integration of genetic algorithm, deep neural network, and a Strength Pareto evolutionary algorithm based on reference direction for multi-objective SPEA/R. Several benchmark functions are tested, and results reveal that the HDNN&SPEA/R is more efficient than the typical deep neural network. stiffness parameter for powertrain mount systems optimization with HDNN&SPEA/R is simulated, respectively. It proved the potential of the HDNN&SPEA/R for stiffness parameter for powertrain mount systems optimization problem.

Author(s):  
Nguyễn H Trưởng ◽  
Dinh-Nam Dao

In this study, a new methodology, hybrid NSGA-III with SPEA/R (HNSGA-III&SPEA/R), has been developed to design and achieve cost optimization of powertrain mount system stiffness parameters. This problem is formalized as a multi-objective optimization problem involving six optimization objectives: mean square acceleration and mean square displacement of the powertrain mount system. A hybrid HNSGA-III&SPEA/R is proposed with the integration of Strength Pareto evolutionary algorithm based on reference direction for Multi-objective (SPEA/R) and Many-objective optimization genetic algorithm (NSGA-III). Several benchmark functions are tested, and results reveal that the HNSGA-III&SPEA/R is more efficient than the typical SPEA/R, NSGA-III. Powertrain mount system stiffness parameters optimization with HNSGA-III&SPEA/R is simulated respectively. It proved the potential of the HNSGA-III&SPEA/R for powertrain mount system stiffness parameter optimization problem.


2020 ◽  
Vol 12 (2) ◽  
pp. 168781402090425 ◽  
Author(s):  
Nguyễn Huy Trưởng ◽  
Dinh-Nam Dao

In this study, a new methodology, hybrid NSGA-III with multi-objective particle swarm optimization (HNSGA-III&MOPSO), has been developed to design and achieve cost optimization of Powertrain mount system stiffness parameters. This problem is formalized as a multi-objective optimization problem involving six optimization objectives: mean square acceleration and mean square displacement of the Powertrain mount system. A hybrid HNSGA-III&MOPSO is proposed with the integration of multi-objective particle swarm optimization and a genetic algorithm (NSGA-III). Several benchmark functions are tested, and results reveal that the HNSGA-III&MOPSO is more efficient than the typical multi-objective particle swarm optimization, NSGA-III. Powertrain mount system stiffness parameter optimization with HNSGA-III&MOPSO is simulated, respectively. It proved the potential of the HNSGA-III&MOPSO for Powertrain mount system stiffness parameter optimization problem. The amplitude of the acceleration of the vehicle frame decreased by 22.8%, and the amplitude of the displacement of the vehicle frame reduced by 12.4% compared to the normal design case. The calculation time of the algorithm HNSGA-III&MOPSO is less than the algorithm NSGA-III, that is, 5 and 6 h, respectively, compared to the algorithm multi-objective particle swarm optimization.


Author(s):  
Dinh-Nam Dao ◽  
Li-Xin Guo

In this article, we conducted a new hybrid method between Non-dominated Sorting Genetic Algorithm II (NSGA-III) and SPEA/R (HNSGA-III&SPEA/R). This method is implemented to find the optimal values of the powertrain mount system stiffness parameters. This is the task of finding multi-objective optimization involving six simultaneous optimization goals: mean square acceleration and mean square displacement of the powertrain mount system. A hybrid HNSGA-III&SPEA/R has proposed with the integration of Strength Pareto evolutionary algorithm-based reference direction for Multi-objective (SPEA/R) and Many-objective optimization genetic algorithm (NSGA-III). Several benchmark functions are tested, and results reveal that the HNSGA-III&SPEA/R is more efficient than the typical SPEA/R and NSGA-III. Powertrain mount system stiffness parameters optimization with HNSGA-III&SPEA/R is simulated. It proved the potential of the HNSGA-III&SPEA/R for powertrain mount system stiffness parameter optimization problem.


2012 ◽  
Vol 433-440 ◽  
pp. 2808-2816
Author(s):  
Jian Jin Zheng ◽  
You Shen Xia

This paper presents a new interactive neural network for solving constrained multi-objective optimization problems. The constrained multi-objective optimization problem is reformulated into two constrained single objective optimization problems and two neural networks are designed to obtain the optimal weight and the optimal solution of the two optimization problems respectively. The proposed algorithm has a low computational complexity and is easy to be implemented. Moreover, the proposed algorithm is well applied to the design of digital filters. Computed results illustrate the good performance of the proposed algorithm.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2775
Author(s):  
Tsubasa Takano ◽  
Takumi Nakane ◽  
Takuya Akashi ◽  
Chao Zhang

In this paper, we propose a method to detect Braille blocks from an egocentric viewpoint, which is a key part of many walking support devices for visually impaired people. Our main contribution is to cast this task as a multi-objective optimization problem and exploits both the geometric and the appearance features for detection. Specifically, two objective functions were designed under an evolutionary optimization framework with a line pair modeled as an individual (i.e., solution). Both of the objectives follow the basic characteristics of the Braille blocks, which aim to clarify the boundaries and estimate the likelihood of the Braille block surface. Our proposed method was assessed by an originally collected and annotated dataset under real scenarios. Both quantitative and qualitative experimental results show that the proposed method can detect Braille blocks under various environments. We also provide a comprehensive comparison of the detection performance with respect to different multi-objective optimization algorithms.


2021 ◽  
pp. 1-13
Author(s):  
Hailin Liu ◽  
Fangqing Gu ◽  
Zixian Lin

Transfer learning methods exploit similarities between different datasets to improve the performance of the target task by transferring knowledge from source tasks to the target task. “What to transfer” is a main research issue in transfer learning. The existing transfer learning method generally needs to acquire the shared parameters by integrating human knowledge. However, in many real applications, an understanding of which parameters can be shared is unknown beforehand. Transfer learning model is essentially a special multi-objective optimization problem. Consequently, this paper proposes a novel auto-sharing parameter technique for transfer learning based on multi-objective optimization and solves the optimization problem by using a multi-swarm particle swarm optimizer. Each task objective is simultaneously optimized by a sub-swarm. The current best particle from the sub-swarm of the target task is used to guide the search of particles of the source tasks and vice versa. The target task and source task are jointly solved by sharing the information of the best particle, which works as an inductive bias. Experiments are carried out to evaluate the proposed algorithm on several synthetic data sets and two real-world data sets of a school data set and a landmine data set, which show that the proposed algorithm is effective.


Sign in / Sign up

Export Citation Format

Share Document