scholarly journals A new automated motion planning system of heavy accelerating articulated vehicle in a real road traffic scenario

Author(s):  
Saeed Shojaei ◽  
Ali R Hanzaki ◽  
Shahram Azadi ◽  
Mohammad A Saeedi

The main purpose of this study is to develop a novel motion planning for an articulated vehicle (AV) in real traffic situations. This motion planning generates collision-free and feasible trajectories based on kinematic and dynamic analyses of the AV concerning its surrounding vehicles. For this purpose, the collision-free trajectories are simulated in the presence of other vehicles, when the AV is conducting a lane change manoeuvre. A new method is utilised to derive the feasible trajectories by taking into account 3-D surface of the slip angle, roll angle, and lateral acceleration of the AV. This paper presents a new approach to generate the trajectory of an accelerating AV considering the surrounding vehicles in manoeuvre, which are either accelerating or decelerating. The optimal trajectory is then obtained based on the longitudinal acceleration of the AV and the time duration of the lane change manoeuvre, aimed at trajectory tracking control. Therefore, a 3-DOF dynamic model of the AV, including the yaw-rate, lateral velocity of the tractor and articulation angle, is developed. The tyres dynamic is simulated using non-linear Dug-off model. Furthermore, an innovative trajectory tracking control system is proposed concerning a sliding mode control. The developed dynamic model of the AV is verified by the Truck-Sim model. Results show that the collision-free and feasible trajectories can be generated based on the newly presented method of trajectory planning. The outcomes of the trajectory tracking control as the final part of the motion planning system indicate that the heavy articulated vehicle can be guided according to the new automated motion planning.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zafer Bingul ◽  
Oguzhan Karahan

Purpose The purpose of this paper is to address a fractional order fuzzy PID (FOFPID) control approach for solving the problem of enhancing high precision tracking performance and robustness against to different reference trajectories of a 6-DOF Stewart Platform (SP) in joint space. Design/methodology/approach For the optimal design of the proposed control approach, tuning of the controller parameters including membership functions and input-output scaling factors along with the fractional order rate of error and fractional order integral of control signal is tuned with off-line by using particle swarm optimization (PSO) algorithm. For achieving this off-line optimization in the simulation environment, very accurate dynamic model of SP which has more complicated dynamical characteristics is required. Therefore, the coupling dynamic model of multi-rigid-body system is developed by Lagrange-Euler approach. For completeness, the mathematical model of the actuators is established and integrated with the dynamic model of SP mechanical system to state electromechanical coupling dynamic model. To study the validness of the proposed FOFPID controller, using this accurate dynamic model of the SP, other published control approaches such as the PID control, FOPID control and fuzzy PID control are also optimized with PSO in simulation environment. To compare trajectory tracking performance and effectiveness of the tuned controllers, the real time validation trajectory tracking experiments are conducted using the experimental setup of the SP by applying the optimum parameters of the controllers. The credibility of the results obtained with the controllers tuned in simulation environment is examined using statistical analysis. Findings The experimental results clearly demonstrate that the proposed optimal FOFPID controller can improve the control performance and reduce reference trajectory tracking errors of the SP. Also, the proposed PSO optimized FOFPID control strategy outperforms other control schemes in terms of the different difficulty levels of the given trajectories. Originality/value To the best of the authors’ knowledge, such a motion controller incorporating the fractional order approach to the fuzzy is first time applied in trajectory tracking control of SP.


2021 ◽  
pp. 1-23
Author(s):  
Stefan Atay ◽  
Matthew Bryant ◽  
Gregory D. Buckner

Abstract This paper presents the dynamic modeling and control of a bi-modal, multirotor vehicle that is capable of omnidirectional terrestrial rolling and multirotor flight. It focuses on the theoretical development of a terrestrial dynamic model and control systems, with experimental validation. The vehicle under consideration may roll along the ground to conserve power and extend endurance but may also fly to provide high mobility and maneuverability when necessary. The vehicle employs a three-axis gimbal system that decouples the rotor orientation from the vehicle's terrestrial rolling motion. A dynamic model of the vehicle's terrestrial motion is derived from first principles. The dynamic model becomes the basis for a nonlinear trajectory tracking control system suited to the architecture of the vehicle. The vehicle is over-actuated while rolling, and the additional degrees of actuation can be used to accomplish auxiliary objectives, such as power optimization and gimbal lock avoidance. Experiments with a hardware vehicle demonstrate the efficacy of the trajectory tracking control system.


Robotica ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 643-657 ◽  
Author(s):  
Ahmet Dumlu ◽  
Koksal Erenturk

SUMMARYIn this study, kinematic analysis of 6-DOF RSS parallel manipulator using Denavit Hartenbeng (D-H) method is investigated. In addition, in order to improve the proposed method, determination of all the active and passive angles, required to obtain Jacobian and complete dynamic model of manipulator, is also achieved. The effects of dynamic models of 6-DOF RSS parallel manipulator with its actuators on trajectory tracking control are studied in detail. Feedback dynamic compensation terms of motor-mechanism coupling system that is needed to compute torque control are obtained through both a single link approximation model and a complete dynamic model. The complete model is derived by taking account of the interaction between the input links and coupler links of the manipulator. Simulations showed that obtaining complete model of manipulator by means of D-H method and using computed control law could improve the quality of trajectory tracking control of parallel manipulator.


Author(s):  
Huang Kang ◽  
Sun Shunqiang ◽  
Zhen Shengchao ◽  
Ge Xinfang ◽  
Zhu Yongqi

This paper introduces a method to solve the crane motion trajectory control problem. A dynamic model is proposed based on the Udwadia–Kalaba equation, which can be solved without extra parameters, such as the Lagrange multiplier. The motion trajectory of a crane is used as a constraint (referred to as trajectory tracking constraint). To satisfy the system trajectory, a method to calculate the driving conditions on the basis of the above conditions is proposed. A 2D plane dynamic model of a crane is established. Five stages of crane movement are obtained. Simulation is performed with Matlab. Simulation results simulation show that the Udwadia–Kalaba equation can be well applied to trajectory tracking control of cranes.


2021 ◽  
Author(s):  
Gaofeng Che ◽  
Zhen Yu

Abstract This paper investigates trajectory-tacking control problem for underactuated autonomous underwater vehicles (AUV) with unknown dynamics. Different from existing adaptive dynamic programming (ADP) schemes, our proposed control scheme can achieve high-level system stability and tracking control accuracy. Firstly, the backstepping approach is introduced into the kinematic model of underactuated AUV and produces a virtual velocity control which is taken as the desired velocity input of the dynamic model of underactuated AUV. Secondly, the error tracking system is constructed according to the dynamic model of underactuated AUV. Thirdly, the critic neural network and the action neural network are employed to transform the trajectory-tracking control problem into optimal control problem based on policy iteration algorithm. At last simulation results are given to verify the effectiveness of the control scheme proposed in this paper.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 112
Author(s):  
Yiqing Li ◽  
Yan Cao ◽  
Feng Jia

Dynamic modeling and control of the soft pneumatic actuators are challenging research. In this paper, a neural network based dynamic control method used for a soft pneumatic actuator with symmetrical chambers is proposed. The neural network is introduced to create the dynamic model for predicting the state of the actuator. In this dynamic model, the effect of the uninflated rubber block on bending deformation is considered. Both pressures of the actuator are used for predicting the state of the actuator during the bending motion. The controller is designed based on this dynamic model for trajectory tracking control. Three types of trajectory tracking control experiments are performed to validate the proposed method. The results show that the proposed control method can control the motion of the actuator and track the trajectory effectively.


Author(s):  
Ho-Hoon Lee

This paper proposes a trajectory control scheme for a horizontal two-link rigid/flexible robot having a payload at the free end. First, a new distributed-parameter dynamic model, consisting of two ordinary differential equations and one partial differential equation, is derived using the extended Hamilton’s principle, and then a trajectory-tracking control scheme is designed based on the distributed-parameter dynamic model, where the Lyapunov stability theorem is used as a mathematical tool. The proposed control is a collocated control, free from the so-called spillover instability. The proposed control consists of a PD control for the rigid dynamics, a proportional control for the flexible dynamics, and feed forward and dynamics compensation. With only two joint actuators, the proposed trajectory control guarantees stability throughout the entire trajectory-tracking control and asymptotic stability at desired goal positions. The theoretical results have been evaluated with control experiments.


Sign in / Sign up

Export Citation Format

Share Document