Optimization and surface modification in electrical discharge machining of AA 6061/SiCp composite using Cu–W electrode

Author(s):  
Balbir Singh ◽  
Jatinder Kumar ◽  
Sudhir Kumar

This paper presents the experimental investigation on the electro-discharge machining of aluminum alloy 6061 reinforced with SiC particles using sintered Cu–W electrode. Experiments have been designed as per central composite rotatable design, using response surface methodology. Machining characteristics such as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR) have been investigated under the influence of four electrical process parameters; namely peak current, pulse on time, pulse off time, and gap voltage. The process parameters have been optimized to obtain optimal combination of MRR, EWR, and SR. Further, the influence of sintered Cu–W electrode on surface characteristics has been analyzed with scanning electron microscopy, energy dispersive spectroscopy, and Vicker microhardness tests. The results revealed that all the process parameters significantly affect MRR, EWR, and SR. The machined surface properties are modified as a result of material transfer from the electrode. The recast layer thickness is increased at higher setting of electrical parameters. The hardness across the machined surface is also increased by the use of sintered Cu–W electrode.

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 375
Author(s):  
Anh-Tuan Nguyen ◽  
Xuan-Hung Le ◽  
Van-Tung Nguyen ◽  
Dang-Phong Phan ◽  
Quoc-Hoang Tran ◽  
...  

In the current study, an optimization process of powder-mixed electrical discharge machining (PMEDM) process when machining cylindrically shaped parts made of hardened 90CrSi steel is reported. In this study, SiC powder was mixed into the Diel MS 7000 dielectric solution. Additionally, graphite was chosen as the electrode material. The multi-objective functions were minimizing the surface roughness (SR) and electrode wear rate (EWR) and maximizing the material removal rate (MRR). The used input parameters of the optimization process included the powder concentration, the pulse-on time, the pulse-off time, the pulse current, and the servo voltage. A combination between the Taguchi method and the grey relation analysis (GRA) method with the support of Minitab R19 software was used to design the experiment and analyze the results. It was found that the optimal set of process parameters that can satisfy the above responses are Cp of 0.5 g/L, Ton of 8 µs, Toff of 8 µs, IP of 5 A, and SV of 4 V.


2021 ◽  
Vol 71 (1) ◽  
pp. 1-18
Author(s):  
Basha Shaik Khadar ◽  
Raju M. V. Jagannadha ◽  
Kolli Murahari

Abstract The paper investigates the influence of boron carbide powder (B4C) mixed in dielectric fluid on EDM of Inconel X-750 alloy. The process parameters selected as discharge current (Ip), pulse on time(Ton), pulse off time(Toff), boron carbide(B4C) powder concentration to examine their performance responses on Material Removal Rate (MRR), Surface Roughness(Ra) and Recast Layer Thickness (RLT).In this study, o examine the process parameters which influence the EDM process during machining of Inconel X-750 alloy using combined techniques of Taguchi and similarity to ideal solutions (TOPSIS).Analysis of variance (ANOVA) was conducted on multi-optimization technique of Taguchi-TOPSIS. ANOVA results identified the best process parameters and their percentages. It developed the mathematical equation on Taguchi-TOPSIS performance characteristics results. The multi optimization results indicated that Ip and Toff are more significant parameters; V, and Ton parameters are less significant. Finally, surface structures were studied at optimized EDM conditions by using scanning electron microscope (SEM).


Author(s):  
Uvaraja Ragavendran ◽  
Ranjan Kumar Ghadai ◽  
Akash Kumar Bhoi ◽  
Manickam Ramachandran ◽  
Kanak Kalita

Electrical discharge machining (EDM) is a broadly used nonconventional material removal process for the machining of conductive work material irrespective of their hardness. In this article, empirical models for material removal rate (MRR) and surface roughness (Ra) of the workpiece are developed based on the extensive experiments performed on a special steel (WP7V) workpiece using a copper electrode. To account for the various parameters, an experimental design based on response surface methodology (RSM) is conducted considering three different factors namely — current, pulse-on-time, and pulse-off-time, each having three different levels. Analysis of variance (ANOVA) is conducted to test the statistical significance of the proposed empirical models. It is essential to determine the relationship and significance of input–output variation. Thus a sensitivity analysis is conducted. The interaction effect of input variables is also studied. Two different state-of-art optimization techniques, namely genetic algorithm (GA) and particle swarm optimization (PSO), are applied to predict the optimal combination of process parameters. Finally, multi-objective optimization is also carried out to simultaneously maximize MRR while minimizing Ra.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Md. Ashikur Rahman Khan ◽  
M. M. Rahman

Electrical discharge machining (EDM) produces complex shapes and permits high-precision machining of any hard or difficult-to-cut materials. The performance characteristics such as surface roughness and microstructure of the machined face are influenced by numerous parameters. The selection of parameters becomes complicated. Thus, the surface roughness (Ra) and microstructure of the machined surface in EDM on Grade 6 titanium alloy are studied is this study. The experimental work is performed using copper as electrode material. The polarity of the electrode is maintained as negative. The process parameters taken into account in this study are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo-voltage (Sv). A smooth surface finish is found at low pulse current, small on-time and high off-time. The servo-voltage affects the roughness diversely however, a finish surface is found at 80 V Sv. Craters, cracks and globules of debris are appeared in the microstructure of the machined part. The size and degree of craters as well as cracks increase with increasing in energy level. Low discharge energy yields an even surface. This approach helps in selecting proper process parameters resulting in economic EDM machining. 


2015 ◽  
Vol 761 ◽  
pp. 303-307 ◽  
Author(s):  
Laily Suraya ◽  
M.A. Ali ◽  
N.I.S. Hussein ◽  
Mohd Razali Muhamad ◽  
Manshoor Bukhari ◽  
...  

The effect of machining parameters on machining characteristics for aluminium alloy LM6 (Al-Sil2) in Electrical Discharge Machining (EDM) die-sinking is studied. The objective of this project is to determine the relationship between the machining parameters including pulse-on time, pulse-off time, peak current and voltage with the machining characterictics such as Material Removal Rate (MRR), Electrode Wear Rate (EWR) and Surface Roughness (Ra). Copper materials having diameter 15mm was chosen as the electrode tool. Design of experimenent using Taguchi technique was employed to design experimental matrix that was used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that current and pulse off time significantly affect MRR, EWR and Ra while pulse on time and voltage are less significant in their effect on machining responses. Results show that using Taguchi as a design matrix, the best setting of optimum value for machining parameters to find the required machining responses can be obtained.


2019 ◽  
Vol 18 (02) ◽  
pp. 213-236 ◽  
Author(s):  
A. V. S. Ram Prasad ◽  
Koona Ramji ◽  
Murahari Kolli ◽  
G. Vamsi Krishna

In this study, the effects of the process parameters on their performance characteristics of lead-induced Ti-6Al-4V alloy were investigated. Taguchi’s [Formula: see text] orthogonal array (OA) has been used to conduct the experiments. Four process parameters were considered each at three levels. Peak current, pulse-on-time, servo voltage and pulse-off-time were selected as process parameters on performance characteristics, namely, material removal rate (MRR), surface roughness (SR) and dimensional deviation (DD). A multi-attribute decision-making (MADM) technique, namely, analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS), has been used to investigate the multiple response characteristics. The weights for performance characteristics are determined by AHP. Finally, analysis of variance method has been employed effectively to bring out the influence of the process parameters associated with each performance characteristic, namely, maximization of MRR and minimization of SR and DD.


2014 ◽  
Vol 699 ◽  
pp. 26-31 ◽  
Author(s):  
Mohd Amran Ali ◽  
Laily Suraya ◽  
Nor Atiqah Jaffar Sidek ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

The machining ability of Electrical Discharge Machining (EDM) die-sinking on material characteristics of LM6 (Al-Sil2) is studied. This is due to the machining process on sharp edge, pocket, deep slot and micro hole cannot be performed by milling and turning machine. The objective of this paper is to determine the relationship between the machining parameters such as pulse on time, pulse off time, peak current and voltage on material removal rate (MRR) that are electrode wear rate (EWR) and surface roughness (Ra). Graphite tool of diameter 15mm was chosen as an electrode. Taguchi method is used as analysis technique to develop experimental matrix that is used to optimize the MRR, EWR and Ra. The analysis was done by using the Minitab software version 16. It is found that the current and pulse off time are significantly effected the MRR, EWR and Ra while pulse on time and voltage are less significant factors that affected the responses. From the Taguchi method, the best setting of optimum value was obtained. Thus, it shows that Taguchi method is the best quality tools that can be applied for production.


2014 ◽  
Vol 660 ◽  
pp. 43-47
Author(s):  
Amran Ali Mohd ◽  
Suraya Laily ◽  
Aisyah Fatin ◽  
Nur Izan Syahriah Hussein ◽  
Mohd Razali Muhamad ◽  
...  

This paper investigates the performance of brass electrode on the removal of aluminium alloys LM6 (Al-Sil2) in an electrical discharge machining (EDM) die-sinking. The machining parameters such as pulse-on time, pulse-off time and peak current were selected to find the responses on the material characteristics such as material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra). Brass with diameter of 10mm was chosen as an electrode. Orthogonal array of Taguchi method was used to develop experimental matrix and to optimize the MRR, EWR and Ra. It is found that the current is the most significantly affected the MRR, EWR and Ra while pulse on time, pulse off time and voltage are less significant factor that affected the responses. Percentage optimum value of MRR increases to 3.99%, however EWR and Ra reduce to 3.10% and 2.48% respectively. Thus, it shows that brass having capability to cut aluminium alloys LM6.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Suppawat Chuvaree ◽  
Kannachai Kanlayasiri

This research investigates the effect of machining parameters on material removal rate, electrode wear ratio, and gap clearance of macro deep holes with a depth-to-diameter ratio over four. The experiments were carried out using electrical discharge machining with side flushing and multi-aperture flushing to improve the machining performance and surface integrity. The machining parameters were pulse on-time, pulse off-time, current, and electrode rotation. Response surface methodology and the desirability function were used to optimize the electrical discharge machining parameters. The results showed that pulse on-time, current, and electrode rotation were positively correlated with the material removal rate. The electrode wear ratio was inversely correlated with pulse on-time and electrode rotation but positively correlated with current. Gap clearance was positively correlated with pulse on-time but inversely correlated with pulse off-time, current, and electrode rotation. The optimal machining condition of electrical discharge machining with side flushing was 100 µs pulse on-time, 20 µs pulse off-time, 15 A current, and 70 rpm electrode rotation; and that of electrical discharge machining with multi-aperture flushing was 130 µs, 2 µs, 15 A, and 70 rpm. The novelty of this research lies in the use of multi-aperture flushing to improve the machining performance, enable a more uniform GC profile, and minimize the incidence of recast layer.


Author(s):  
Gajanan Kamble ◽  
Dr. N. Lakshamanaswamy ◽  
Gangadhara H S ◽  
Sharon Markus ◽  
N. Rajath

Wire cut electrical discharge machining (WEDM) is a hybrid manufacturing technology which enables machining of all engineering materials. This research article deals with investigation on Optimization of the Process Parameters of the wire cut EDM of Bronze material of dimension (80*80*40) in mm. Material removal rate, Surface roughness and Kerf width were studied against the process parameters such as Pulse on time(TON), Pulse off time (TOFF) and Current(IP). The machining parameters for wire EDM were optimized for achieving the combined objectives. As there are three input parameters 27 experiments is carried out and full factorial is used. Optimized parameters were found using (ANOVA) and the error percentage can be validated and parameter contribution for the Material removal rate (MRR) and Surface roughness were found.


Sign in / Sign up

Export Citation Format

Share Document