scholarly journals Optimizing Main Process Parameters When Conducting Powder-Mixed Electrical Discharge Machining of Hardened 90CrSi

Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 375
Author(s):  
Anh-Tuan Nguyen ◽  
Xuan-Hung Le ◽  
Van-Tung Nguyen ◽  
Dang-Phong Phan ◽  
Quoc-Hoang Tran ◽  
...  

In the current study, an optimization process of powder-mixed electrical discharge machining (PMEDM) process when machining cylindrically shaped parts made of hardened 90CrSi steel is reported. In this study, SiC powder was mixed into the Diel MS 7000 dielectric solution. Additionally, graphite was chosen as the electrode material. The multi-objective functions were minimizing the surface roughness (SR) and electrode wear rate (EWR) and maximizing the material removal rate (MRR). The used input parameters of the optimization process included the powder concentration, the pulse-on time, the pulse-off time, the pulse current, and the servo voltage. A combination between the Taguchi method and the grey relation analysis (GRA) method with the support of Minitab R19 software was used to design the experiment and analyze the results. It was found that the optimal set of process parameters that can satisfy the above responses are Cp of 0.5 g/L, Ton of 8 µs, Toff of 8 µs, IP of 5 A, and SV of 4 V.

Author(s):  
Balbir Singh ◽  
Jatinder Kumar ◽  
Sudhir Kumar

This paper presents the experimental investigation on the electro-discharge machining of aluminum alloy 6061 reinforced with SiC particles using sintered Cu–W electrode. Experiments have been designed as per central composite rotatable design, using response surface methodology. Machining characteristics such as material removal rate (MRR), electrode wear ratio (EWR), and surface roughness (SR) have been investigated under the influence of four electrical process parameters; namely peak current, pulse on time, pulse off time, and gap voltage. The process parameters have been optimized to obtain optimal combination of MRR, EWR, and SR. Further, the influence of sintered Cu–W electrode on surface characteristics has been analyzed with scanning electron microscopy, energy dispersive spectroscopy, and Vicker microhardness tests. The results revealed that all the process parameters significantly affect MRR, EWR, and SR. The machined surface properties are modified as a result of material transfer from the electrode. The recast layer thickness is increased at higher setting of electrical parameters. The hardness across the machined surface is also increased by the use of sintered Cu–W electrode.


2021 ◽  
Vol 71 (1) ◽  
pp. 1-18
Author(s):  
Basha Shaik Khadar ◽  
Raju M. V. Jagannadha ◽  
Kolli Murahari

Abstract The paper investigates the influence of boron carbide powder (B4C) mixed in dielectric fluid on EDM of Inconel X-750 alloy. The process parameters selected as discharge current (Ip), pulse on time(Ton), pulse off time(Toff), boron carbide(B4C) powder concentration to examine their performance responses on Material Removal Rate (MRR), Surface Roughness(Ra) and Recast Layer Thickness (RLT).In this study, o examine the process parameters which influence the EDM process during machining of Inconel X-750 alloy using combined techniques of Taguchi and similarity to ideal solutions (TOPSIS).Analysis of variance (ANOVA) was conducted on multi-optimization technique of Taguchi-TOPSIS. ANOVA results identified the best process parameters and their percentages. It developed the mathematical equation on Taguchi-TOPSIS performance characteristics results. The multi optimization results indicated that Ip and Toff are more significant parameters; V, and Ton parameters are less significant. Finally, surface structures were studied at optimized EDM conditions by using scanning electron microscope (SEM).


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 148
Author(s):  
Suppawat Chuvaree ◽  
Kannachai Kanlayasiri

This research investigates the effect of machining parameters on material removal rate, electrode wear ratio, and gap clearance of macro deep holes with a depth-to-diameter ratio over four. The experiments were carried out using electrical discharge machining with side flushing and multi-aperture flushing to improve the machining performance and surface integrity. The machining parameters were pulse on-time, pulse off-time, current, and electrode rotation. Response surface methodology and the desirability function were used to optimize the electrical discharge machining parameters. The results showed that pulse on-time, current, and electrode rotation were positively correlated with the material removal rate. The electrode wear ratio was inversely correlated with pulse on-time and electrode rotation but positively correlated with current. Gap clearance was positively correlated with pulse on-time but inversely correlated with pulse off-time, current, and electrode rotation. The optimal machining condition of electrical discharge machining with side flushing was 100 µs pulse on-time, 20 µs pulse off-time, 15 A current, and 70 rpm electrode rotation; and that of electrical discharge machining with multi-aperture flushing was 130 µs, 2 µs, 15 A, and 70 rpm. The novelty of this research lies in the use of multi-aperture flushing to improve the machining performance, enable a more uniform GC profile, and minimize the incidence of recast layer.


Author(s):  
T Vijaya Babu ◽  
B Subbaratnam

WEDM (Wire Electrical discharge machining) is a nonconventional machining processes used in complicated shapes with high accuracy which are not possible with other conventional methods .Stainless steel 304 is used in present experimental work. Experiments are completed using Taguchi’s method with L9 orthogonal array .The aim of this work is to optimize the WEDM process parameters by considering input parameters are pulse on time , pulse off time ,peak current and wire feed and experiments are conducted with help of input parameters at three levels and response output parameters are MRR (Material removal Rate) and Surface Roughness (SR).Setting of parameters using by Taguchi’s method.


2012 ◽  
Vol 488-489 ◽  
pp. 871-875
Author(s):  
V. Anandakrishnan ◽  
V. Senthilkumar

Copper based metal matrix composite reinforced with Boron Carbide is a newly developed Electrical Discharge Machining (EDM) electrode showing better performance than the conventional copper based electrode. Right selection of machining parameters such as current, pulse on time and pulse off time is one of the most important aspects in EDM. In this paper an attempt has been made to develop mathematical models for relating the Material Removal Rate (MRR), Tool Removal Rate (TRR) and Surface roughness (Ra) to machining parameters (current, pulse-on time and pulse-off time). Furthermore, a study was carried out to analyze thSubscript texte effects of machining parameters on various performance parameters such as, MRR, TRR and Ra. The results of Analysis of Variance (ANOVA) indicate that the proposed mathematical models, can adequately describe the performance within the limits of the factors being studied. Response surface modeling is used to develop surface and contour graphs to analyze the effects of EDM input parameters on outer parameters.


The growing demand for the use of high strength to weight alloys in industries for manufacturing complex structures challenges the machinability of such advanced materials. In the present investigation, the machinability of SiC particle reinforced Al 2124 composite was studied on Wire electrical discharge machining (WEDM). The process parameters namely pulse on-time (Ton), pulse off time (Toff), peak current (IP), and servo voltage (SV) were optimized by utilizing the central composite design layout. The output responses such as kerf and material removal rate (MRR) were studied in detail. The single and multi-objective optimization was studied for a combination effect using Derringer’s desirability approach and Genetic Algorithm (GA). The experimental and predicted values for each response were validated at the optimized condition. The experimental results were found in line with the predicted values. Multi objective optimization of kerf and MRR by GA showing better result compared to RSM.


2020 ◽  
Vol 861 ◽  
pp. 129-135 ◽  
Author(s):  
Manh Cuong Nguyen ◽  
Luu Anh Tung ◽  
Bui Thanh Danh ◽  
Nguyen Van Cuong ◽  
Tran Thi Hong ◽  
...  

This work is done to determine the effects of the input factors of powder mixed electrical discharge machining (PMEDM) process on the material removal rate (MRR). In the study, the workpiece is cylindrical parts made from 90CrSi alloy steel. Also, five factors containing the pulse on time Ton, the powder concentration Cp, the pulse off time Toff, the pulse current IP, and the server voltage SV were discovered to find their impact on MRR. In addition, the Taguchi method and ANOVA analysis were used to design experiment and analyze the results. In addition, an optimal model of the MRR was introduced. Also, the model has been well verified by comparison with testing, and so it can be used for further studies in the PMEDM process.


2012 ◽  
Vol 622-623 ◽  
pp. 19-24
Author(s):  
P. Balasubramanian ◽  
Thiyagarajan Senthilvelan

In this study, input parameters of Electrical Discharge machining (EDM) process have been optimised for two different materials EN-8 and Die steel-D3 were machined by using sintered copper electrode. Analysis of variance (ANOVA) was applied to study the influences of process parameters viz: - peak current, pulse on time, di-electric pressure and diameter of electrode on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR) for both materials. Response surface methodology (RSM) has been applied to optimise the multi responses in order to get maximum MRR, minimum TWR and minimum SR. Furthermore, mathematical model has been formulated to estimate the corresponding output responses for both work pieces. It has been observed that compared to EN 8 material, the MRR value is low and TWR is high for D3 material. However the SR value is marginally lower than obtained in EN8.R2 value is above 0.90 for both work pieces.


2015 ◽  
Vol 14 (03) ◽  
pp. 189-202 ◽  
Author(s):  
V. Vikram Reddy ◽  
P. Madar Valli ◽  
A. Kumar ◽  
Ch. Sridhar Reddy

In the present work, an investigation has been made into the electrical discharge machining process during machining of precipitation hardening stainless steel PH17-4. Taguchi method is used to formulate the experimental layout, to analyze the effect of each process parameter on machining characteristics and to predict the optimal choice for each electrical discharge machining process parameters namely, peak current, pulse on time and pulse off time that give up optimal process performance characteristics such as material removal rate, surface roughness, tool wear rate and surface hardness. To identify the significance of parameters on measured response, the analysis of variance has been done. It is found that parameters peak current and pulse on time have the significant affect on material removal rate, surface roughness, tool wear rate and surface hardness. However, parameter pulse off time has significant affect on material removal rate. Confirmation tests are conducted at their respective optimum parametric settings to verify the predicted optimal values of performance characteristics.


2015 ◽  
Vol 766-767 ◽  
pp. 902-907
Author(s):  
Bibin K. Tharian ◽  
B. Kuriachen ◽  
Josephkunju Paul ◽  
Paul V. Elson

Wire electrical discharge machining is one of the important non-traditional machining processes for machining difficult to machine materials. It involves the removal of material by the discrete electric discharges produced between the inter electrode gap of continuously moving wire electrode and the work piece. The ability to produce intricate profiles on materials irrespective of the mechanical properties made this process to be widely used in industries. The present study investigates the relationship of various process parameters in WEDM of AISI 202 stainless steel with brass electrode.The experiments were planned according to Taguchi’s L18 orthogonal array and experimental models were developed. The important process parameters identified for the present study were pulse on time, peak current, pulse off time, wire feed, wire tension, dielectric flushing pressure, servo feed and gap voltage. The surface roughness of the machined surface was measured as the process performance measure. Analysis of variance test has also been carried out to check the adequacy of the developed models and to identify the level of significance of each process parameters. In addition to the developed models, ABC optimization has been performed to identify the optimum parameter combination for minimum surface roughness and the obtained optimal process parameters are peak current 11 A, pulse on time 100 μs, pulse off time 49 μs, wire feed 4 m/min, wire tension 10 N, flushing pressure 12 kg/cm2, servo feed 2100 mm/min and set gap voltage 30 V. Finally the results were verified with the experimental results and found that they are in good agreement.


Sign in / Sign up

Export Citation Format

Share Document