Molecular dynamics simulation of plastic deformation in polyethylene under uniaxial and biaxial tension

Author(s):  
Yi Zhang ◽  
Liang Qiao ◽  
Junming Fan ◽  
Shifeng Xue ◽  
PY Ben Jar

Plastic deformation of polyethylene in uniaxial and biaxial loading conditions is studied using molecular dynamics simulation. Effects of tensile strain rates from 1 × 105 to 1 × 109 s−1, and mass density in the range of 0.923–0.926 g/cm3 on mechanical behaviour and microstructure evolution are examined. Two biaxial tensile deformation modes are considered. One is through simultaneous stretching in both the x and y directions and the other sequential stretching, firstly in the x-direction and then in the y-direction while strain in the x-direction remains constant. Tangent modulus and yield stress that are determined using the stress–strain curves from the molecular dynamics simulation show a strong dependence on the deformation mode, strain rate and mass density, and all are in good agreement with results from the experimental testing, including fracture behaviour which is ductile at a low strain rate but brittle at a high strain rate. Furthermore, the study suggests that the stress–strain curves under uniaxial tension and simultaneous biaxial tension at a relatively low strain rate contain four distinguishable regions, for elastic, yield, strain softening and strain hardening, respectively, whereas under sequential biaxial tension, stress increases monotonically with the increase of strain, without noticeable yielding, strain softening or strain hardening behaviour. The molecular dynamics simulation also suggests that an increase in the strain rate enhances the possibility of cavitation. Under simultaneous biaxial tension, with the strain rate increasing from 1 × 106 to 1 × 109 s−1, the molecular dynamics simulation shows that polyethylene failure changes from a local to a global phenomenon, accompanied by a decrease of the void size and increase of uniformity in the void distribution. Under sequential biaxial tension, on the other hand, the density of the cavities is clearly reduced.

Author(s):  
Juanfang Liu ◽  
Chao Liu ◽  
Qin Li

The flow properties and dynamical behavior of fluid in a nanochannel were investigated by nonequilibrium molecular dynamics simulation. First of all, the locale distribution of molecules in the channel is found to be strongly inhomogeneous compared to the bulk fluid. In the vicinity of the wall, portion of the fluid molecules are absorbed on the surface of wall due to the strong interaction of the atoms between the wall and liquid, so that the fluid density in the contact region would be much larger than one of the bulk fluid. But in the other region, the local density value approaches one of the bulk fluids with the increasing distance from the wall. This oscillatory behavior of density resulted in different motion behavior of molecules in the different region of nanochannel. The molecular behavior in the interfacial region is remarkably different from those of fluid atoms in the center of channel and wall atoms, which posses both the motion properties of bulk liquids and a solid atom. At the molecular level, macroscopic continuum hypothesis failed, that is, the results predicted by the Navier-Stoke equations deviate from the simulation data adopted by molecular dynamics simulation. In the paper, the velocity profiles for the channels with different width were plotted, which demonstrated that the time-averaged velocity profiles was not quadratic when the channel width was less than 10 molecular diameters. But on the other cases, the velocity profiles will agree well with the analytical solution based on the NS theory. The molecular dynamics simulation method can withdraw the important microscopical information from the simulation process, which benefit to analyze the flow mechanism at such length scale channel.


2014 ◽  
Vol 513-517 ◽  
pp. 113-116
Author(s):  
Jen Ching Huang ◽  
Fu Jen Cheng ◽  
Chun Song Yang

The Youngs modulus of multilayered nanothin films is an important property. This paper focused to investigate the Youngs Modulus of Multilayered Ni/Cu Multilayered nanoThin Films under different condition by Molecular Dynamics Simulation. The NVT ensemble and COMPASS potential function were employed in the simulation. The multilayered nanothin film contained the Ni and Cu thin films in sequence. From simulation results, it is found that the Youngs modulus of Cu/Ni multilayered nanothin film is different at different lattice orientations, temperatures and strain rate. After experiments, it can be found that the Youngs modulus of multilayered nanothin film in the plane (100) is highest. As thickness of the thin film and system temperature rises, Youngs modulus of multilayered nanothin film is reduced instead. And, the strain rate increases, the Youngs modulus of Cu/Ni multilayered nanothin film will also increase.


RSC Advances ◽  
2016 ◽  
Vol 6 (34) ◽  
pp. 28792-28800 ◽  
Author(s):  
Chong Qiao ◽  
Yanli Zhou ◽  
Xiaolin Cai ◽  
Weiyang Yu ◽  
Bingjie Du ◽  
...  

The plastic deformation mechanism of iron (Fe) nanowires under torsion is studied using the molecular dynamics (MD) method by applying an external driving force at a constant torsion speed.


2000 ◽  
Vol 11 (05) ◽  
pp. 1067-1076
Author(s):  
ŞAKIR ERKOÇ ◽  
ŞENAY KATIRCIOĞLU

We have investigated the decomposition of C 60 molecules with low and high coverages on Si(100)(2×1) surface at elevated temperatures. We also investigated the decomposition of an isolated C 60 molecule. We employed molecular-dynamics simulation using a model potential. It has been found that C 60 decomposes on Si(100) surface after 1000 K in the case of low coverage (0.11), however in high coverage case (0.67), C 60 molecules decompose after 900 K. On the other hand, isolated C 60 molecule decomposes after 7500 K, interestingly it shows a phase change from 3D to 2D at higher temperatures.


2009 ◽  
Vol 283-286 ◽  
pp. 149-154 ◽  
Author(s):  
E.A. Pastukhov ◽  
N.I. Sidorov ◽  
Valery A. Polukhin ◽  
V.P. Chentsov

Molecular dynamics simulation was used for investigating hydrogen migration in Pd-Si alloy at a temperature Т = 300 K. The strong affect of hydrogen dynamics and its defects creation to structure of palladium matrix is stated. The partial radial distribution function calculation for silicon specifies a preferable arrangement of silicon atoms relative to each other in the second coordination sphere. Model calculations have shown that not only silicon atoms can affect hydrogen mobility. Hydrogen itself also can significantly change the diffusion of the other components in the alloy.


Sign in / Sign up

Export Citation Format

Share Document